These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 2219998)

  • 1. [The question of the transmissibility of the results of subcutaneous tests of biomaterials from animals to humans].
    Schreiber H; Keller F; Kinzl HP; Hunger H; Knöfler W; Rübling U; Merten W
    Z Exp Chir Transplant Kunstliche Organe; 1990; 23(1):23-5. PubMed ID: 2219998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Procedure for the biological testing of substances in the guinea pig subcutaneous test. II. The results of mathematical evaluation and modelling of the morphometric data on the area of reaction].
    Knöfler W; Keller F; Hess J
    Z Exp Chir Transplant Kunstliche Organe; 1986; 19(3):153-60. PubMed ID: 3751203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biocompatibility of implants with and without fluorohydrocarbon glow polymer coating. 4. Recommendations for the histocompatibility (repair) index for the evaluation of various implant materials].
    Keller F; Knöfler W; Schreiber H
    Z Exp Chir Transplant Kunstliche Organe; 1985; 18(1):9-18. PubMed ID: 3887784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Soft tissue reaction following bioactive and bio-inactive implantation materials in subcutaneous tissue of rats].
    Zuchanke K; Köhler S; Lunzenauer K
    Z Exp Chir; 1982 Jun; 15(3):159-66. PubMed ID: 6753371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Histocompatibility of implant materials--animal model criteria and findings].
    Reuling N; Keil M; Pohl-Reuling B
    Dtsch Zahnarztl Z; 1991 Oct; 46(10):694-8. PubMed ID: 1817866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Estimation of biocompatibility of fibers with large mechanical resistance].
    Zywicka B
    Polim Med; 2004; 34(3):3-48. PubMed ID: 15631154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Acceptance of polytetrafluoroethylene by subcutaneous connective tissue].
    Richter EJ
    Biomed Tech (Berl); 1989 Oct; 34(10):243-7. PubMed ID: 2684282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatibility of polymers.
    Mohr W; Kirkpatrick CJ
    Aktuelle Probl Chir Orthop; 1983; 26():18-27. PubMed ID: 6136227
    [No Abstract]   [Full Text] [Related]  

  • 9. Tissue reaction to soft-tissue anchored percutaneous implants in rabbits.
    Jansen JA; Paquay YG; van der Waerden JP
    J Biomed Mater Res; 1994 Sep; 28(9):1047-54. PubMed ID: 7814432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Recent aspects of the biocompatibility of carbon fibers. A histologic and electron microscopy analysis].
    Sparmann M; Noack W
    Z Orthop Ihre Grenzgeb; 1986; 124(6):671-6. PubMed ID: 3551364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytological evaluation of the tissue-implant reaction associated with subcutaneous implantation of polymers coated with titaniumcarboxonitride in vivo.
    Lehle K; Lohn S; Reinerth GG; Schubert T; Preuner JG; Birnbaum DE
    Biomaterials; 2004 Nov; 25(24):5457-66. PubMed ID: 15142726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue reaction and biodegradation of implanted cross-linked high amylose starch in rats.
    Désévaux C; Dubreuil P; Lenaerts V; Girard C
    J Biomed Mater Res; 2002; 63(6):772-9. PubMed ID: 12418023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biocompatibility of carbon fibers and carbon microparticles].
    Wolter D
    Aktuelle Probl Chir Orthop; 1983; 25():30-8. PubMed ID: 6136205
    [No Abstract]   [Full Text] [Related]  

  • 14. [Biological evaluation of In-Ceram-ceramics compared to cobalt-base-alloys and the metals titanium, tantalum and niobium in animal experiments].
    Limberger F; Lenz E
    Dtsch Stomatol (1990); 1991; 41(11):407-10. PubMed ID: 1817651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Morphologic studies of the reaction of the subcutaneous connective tissue in rats to implantation of porous ceramics].
    Kotz J; Bieniek J; Bieniek A
    Polim Med; 1989; 19(3-4):119-25. PubMed ID: 2641401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biocompatibility of implants with and without fluorohydrocarbon glow-discharge polymer coating. 3. Mathematical models of the subsiding processes of the tissue reaction].
    Keller F; Knöfler W; Schreiber H; Hess J; Wohlgemuth B
    Z Exp Chir Transplant Kunstliche Organe; 1984; 17(6):330-6. PubMed ID: 6516503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Biocompatibility of implants with and without fluorohydrocarbon glow-discharge polymer coating. 1. Histologic and semiquantitative estimation of subcutaneous reactions in guinea pigs].
    Knöfler W; Wohlgemuth B; Schreiber H; Keller F; Hess J
    Z Exp Chir Transplant Kunstliche Organe; 1984; 17(6):316-24. PubMed ID: 6516501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histopathological evaluation of the tissue reactions to Endo-Fill root canal sealant and filling material in rats.
    Görduysus MO; Etikan I; Gököz A
    J Endod; 1998 Mar; 24(3):194-6. PubMed ID: 9558586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Tissue reaction after implantation of ceramic biomaterials with introduced electrokinetic zeta potential on surface].
    Lewandowski R; Rutowski R; Staniszewska-Kuś J; Pielka S; Wnukiewicz B
    Polim Med; 2004; 34(1):13-25. PubMed ID: 15222224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for histomorphometric characterization of a peri-implantar new formed tissue to biomaterials.
    Cannas M; Bosetti M; Navone R
    Ital J Anat Embryol; 1995; 100 Suppl 1():605-12. PubMed ID: 11322341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.