BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22200783)

  • 61. Salt stress tolerance of methylotrophic bacteria Methylophilus sp. and Methylobacterium sp. isolated from coal mine spoils.
    Giri DD; Kumar A; Shukla PN; Singh R; Singh PK; Pandey KD
    Pol J Microbiol; 2013; 62(3):273-80. PubMed ID: 24459832
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Evaluation of intraspecies interactions in biofilm formation by Methylobacterium species isolated from pink-pigmented household biofilms.
    Xu FF; Morohoshi T; Wang WZ; Yamaguchi Y; Liang Y; Ikeda T
    Microbes Environ; 2014; 29(4):388-92. PubMed ID: 25381715
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Pantothenate auxotrophy of Methylobacterium spp. isolated from living plants.
    Yoshida Y; Iguchi H; Sakai Y; Yurimoto H
    Biosci Biotechnol Biochem; 2019 Mar; 83(3):569-577. PubMed ID: 30475153
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Impact of Phyllosphere
    Sanjenbam P; Shivaprasad PV; Agashe D
    Microbiol Spectr; 2022 Aug; 10(4):e0081022. PubMed ID: 35856668
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Phytohormone signalling pathways interact with sugars during seed germination and seedling development.
    Yuan K; Wysocka-Diller J
    J Exp Bot; 2006; 57(12):3359-67. PubMed ID: 16916886
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Intercellular colonization and growth promoting effects of Methylobacterium sp. with plant-growth regulators on rice (Oryza sativa L. Cv CO-43).
    Senthilkumar M; Madhaiyan M; Sundaram S; Kannaiyan S
    Microbiol Res; 2009; 164(1):92-104. PubMed ID: 17207982
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Plants in the pink: cytokinin production by methylobacterium.
    Lidstrom ME; Chistoserdova L
    J Bacteriol; 2002 Apr; 184(7):1818. PubMed ID: 11889085
    [No Abstract]   [Full Text] [Related]  

  • 68. Methylotrophic bacteria on the surfaces of field-grown sunflower plants: a biogeographic perspective.
    Schauer S; Kutschera U
    Theory Biosci; 2008 Mar; 127(1):23-9. PubMed ID: 18193314
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Dominant colonization and inheritance of Methylobacterium sp. strain OR01 on perilla plants.
    Mizuno M; Yurimoto H; Iguchi H; Tani A; Sakai Y
    Biosci Biotechnol Biochem; 2013; 77(7):1533-8. PubMed ID: 23832351
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Identification of Methylobacterium strains using sequence analysis of 16S rRNA genes].
    Romanovskaia VA; Rokitko PV; Shilin SO; Chernaia NA; Malashenko IuR
    Mikrobiologiia; 2004; 73(6):846-8. PubMed ID: 15688945
    [No Abstract]   [Full Text] [Related]  

  • 71. [Methanotrophs and methylobacteria are found in woody plant tissues within a winter period].
    Doronina NV; Ivanova EG; Suzina NF; Trotsenko IuA
    Mikrobiologiia; 2004; 73(6):817-24. PubMed ID: 15688941
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Methylobacterium spp. mitigation of UV stress in mung bean (Vigna radiata L.).
    Gamit HA; Amaresan N
    Photochem Photobiol Sci; 2023 Dec; 22(12):2839-2850. PubMed ID: 37838625
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Analysis of 16S rRNA and mxaF genes revealing insights into Methylobacterium niche-specific plant association.
    Dourado MN; Andreote FD; Dini-Andreote F; Conti R; Araújo JM; Araújo WL
    Genet Mol Biol; 2012 Jan; 35(1):142-8. PubMed ID: 22481887
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Efficient methanol-degrading aerobic bacteria isolated from a wetland ecosystem.
    Thulasi K; Jayakumar A; Balakrishna Pillai A; Gopalakrishnapillai Sankaramangalam VK; Kumarapillai H
    Arch Microbiol; 2018 Jul; 200(5):829-833. PubMed ID: 29637291
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere.
    Kwak MJ; Jeong H; Madhaiyan M; Lee Y; Sa TM; Oh TK; Kim JF
    PLoS One; 2014; 9(9):e106704. PubMed ID: 25211235
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Phenotypic diversity of Methylobacterium associated with rice landraces in North-East India.
    Sanjenbam P; Buddidathi R; Venkatesan R; Shivaprasad PV; Agashe D
    PLoS One; 2020; 15(2):e0228550. PubMed ID: 32092057
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Methylotrophic bacteria in sustainable agriculture.
    Kumar M; Tomar RS; Lade H; Paul D
    World J Microbiol Biotechnol; 2016 Jul; 32(7):120. PubMed ID: 27263015
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Isolation of optically targeted single bacteria by application of fluidic force microscopy to aerobic anoxygenic phototrophs from the phyllosphere.
    Stiefel P; Zambelli T; Vorholt JA
    Appl Environ Microbiol; 2013 Aug; 79(16):4895-905. PubMed ID: 23770907
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Functional analysis of the genome fragment involved in aerobic dichloromethane degradation by methylobacterium dichloromethanicum DM4].
    Firsova IuE; Fedorov DN; Trotsenko IuA
    Prikl Biokhim Mikrobiol; 2012; 48(5):516-21. PubMed ID: 23101389
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Phyllosphere Methylobacterium bacteria contain UVA-absorbing compounds.
    Yoshida S; Hiradate S; Koitabashi M; Kamo T; Tsushima S
    J Photochem Photobiol B; 2017 Feb; 167():168-175. PubMed ID: 28068611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.