These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 22201069)

  • 1. A coclustering approach for mining large protein-protein interaction networks.
    Pizzuti C; Rombo SE
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(3):717-30. PubMed ID: 22201069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MOEPGA: A novel method to detect protein complexes in yeast protein-protein interaction networks based on MultiObjective Evolutionary Programming Genetic Algorithm.
    Cao B; Luo J; Liang C; Wang S; Song D
    Comput Biol Chem; 2015 Oct; 58():173-81. PubMed ID: 26298638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein complex prediction for large protein protein interaction networks with the Core&Peel method.
    Pellegrini M; Baglioni M; Geraci F
    BMC Bioinformatics; 2016 Nov; 17(Suppl 12):372. PubMed ID: 28185552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustering and overlapping modules detection in PPI network based on IBFO.
    Lei X; Wu S; Ge L; Zhang A
    Proteomics; 2013 Jan; 13(2):278-90. PubMed ID: 23229795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of functional modules from protein interaction networks with an enhanced random walk based algorithm.
    Cai B; Wang H; Zheng H; Wang H
    Int J Comput Biol Drug Des; 2011; 4(3):290-306. PubMed ID: 21778561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BalanceAli: Multiple PPI Network Alignment With Balanced High Coverage and Consistency.
    Gao J; Song B; Ke W; Hu X
    IEEE Trans Nanobioscience; 2017 Jul; 16(5):333-340. PubMed ID: 28541215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of hierarchical and overlapping functional modules in PPI networks.
    Wang J; Ren J; Li M; Wu FX
    IEEE Trans Nanobioscience; 2012 Dec; 11(4):386-93. PubMed ID: 22955967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Algorithms and tools for protein-protein interaction networks clustering, with a special focus on population-based stochastic methods.
    Pizzuti C; Rombo SE
    Bioinformatics; 2014 May; 30(10):1343-52. PubMed ID: 24458952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A degree-distribution based hierarchical agglomerative clustering algorithm for protein complexes identification.
    Yu L; Gao L; Li K; Zhao Y; Chiu DK
    Comput Biol Chem; 2011 Oct; 35(5):298-307. PubMed ID: 22000801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. k-Partite cliques of protein interactions: A novel subgraph topology for functional coherence analysis on PPI networks.
    Liu Q; Chen YP; Li J
    J Theor Biol; 2014 Jan; 340():146-54. PubMed ID: 24056214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Complexes in Biological Networks Through Diversified Dense Subgraph Mining.
    Ma X; Zhou G; Shang J; Wang J; Peng J; Han J
    J Comput Biol; 2017 Sep; 24(9):923-941. PubMed ID: 28570104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. hF-measure: A new measurement for evaluating clusters in protein-protein interaction networks.
    Li M; Wu X; Pan Y; Wang J
    Proteomics; 2013 Jan; 13(2):291-300. PubMed ID: 23193073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PROPER: global protein interaction network alignment through percolation matching.
    Kazemi E; Hassani H; Grossglauser M; Pezeshgi Modarres H
    BMC Bioinformatics; 2016 Dec; 17(1):527. PubMed ID: 27955623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global alignment of protein-protein interaction networks.
    Mongiovì M; Sharan R
    Methods Mol Biol; 2013; 939():21-34. PubMed ID: 23192538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein complexes discovery based on protein-protein interaction data via a regularized sparse generative network model.
    Zhang XF; Dai DQ; Li XX
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(3):857-70. PubMed ID: 22291160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B; Guan J
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(4):616-27. PubMed ID: 26356332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mining Dense Overlapping Subgraphs in weighted protein-protein interaction networks.
    Lee AJ; Lin MC; Hsu CM
    Biosystems; 2011 Mar; 103(3):392-9. PubMed ID: 21095218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein complex prediction via cost-based clustering.
    King AD; Przulj N; Jurisica I
    Bioinformatics; 2004 Nov; 20(17):3013-20. PubMed ID: 15180928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network simulation reveals significant contribution of network motifs to the age-dependency of yeast protein-protein interaction networks.
    Liang C; Luo J; Song D
    Mol Biosyst; 2014 Jul; 10(9):2277-88. PubMed ID: 24964354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MOfinder: a novel algorithm for detecting overlapping modules from protein-protein interaction network.
    Yu Q; Li GH; Huang JF
    J Biomed Biotechnol; 2012; 2012():103702. PubMed ID: 22500072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.