These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 22201447)
1. Labile zinc-assisted biological phosphate chemosensing and related molecular logic gating interpretations. Kim K; Ha Y; Kaufman L; Churchill DG Inorg Chem; 2012 Jan; 51(2):928-38. PubMed ID: 22201447 [TBL] [Abstract][Full Text] [Related]
2. Aqueous fluorometric and colorimetric sensing of phosphate ions by a fluorescent dinuclear zinc complex. Khatua S; Choi SH; Lee J; Kim K; Do Y; Churchill DG Inorg Chem; 2009 Apr; 48(7):2993-9. PubMed ID: 19265392 [TBL] [Abstract][Full Text] [Related]
3. Phosphates sensing: two polyamino-phenolic zinc receptors able to discriminate and signal phosphates in water. Ambrosi G; Formica M; Fusi V; Giorgi L; Guerri A; Macedi E; Micheloni M; Paoli P; Pontellini R; Rossi P Inorg Chem; 2009 Jul; 48(13):5901-12. PubMed ID: 19432470 [TBL] [Abstract][Full Text] [Related]
4. Polydiacetylene-based colorimetric self-assembled vesicular receptors for biological phosphate ion recognition. Jose DA; Stadlbauer S; König B Chemistry; 2009 Jul; 15(30):7404-12. PubMed ID: 19551781 [TBL] [Abstract][Full Text] [Related]
5. Fluorescent sensing and discrimination of ATP and ADP based on a unique sandwich assembly of pyrene-adenine-pyrene. Xu Z; Spring DR; Yoon J Chem Asian J; 2011 Aug; 6(8):2114-22. PubMed ID: 21506284 [TBL] [Abstract][Full Text] [Related]
6. Chemosensing of Guanosine Triphosphate Based on a Fluorescent Dinuclear Zn(II)-Dipicolylamine Complex in Water. Bazany-Rodríguez IJ; Salomón-Flores MK; Bautista-Renedo JM; González-Rivas N; Dorazco-González A Inorg Chem; 2020 Jun; 59(11):7739-7751. PubMed ID: 32391691 [TBL] [Abstract][Full Text] [Related]
7. Pyrophosphate-induced reorganization of a reporter-receptor assembly via boronate esterification; a new strategy for the turn-on fluorescent detection of multi-phosphates in aqueous solution. Nonaka A; Horie S; James TD; Kubo Y Org Biomol Chem; 2008 Oct; 6(19):3621-5. PubMed ID: 19082166 [TBL] [Abstract][Full Text] [Related]
8. A highly selective and sensitive fluorescence sensing system for distinction between diphosphate and nucleoside triphosphates. Lee JH; Jeong AR; Jung JH; Park CM; Hong JI J Org Chem; 2011 Jan; 76(2):417-23. PubMed ID: 21174420 [TBL] [Abstract][Full Text] [Related]
9. A turn-on two-photon fluorescent probe for ATP and ADP. Rao AS; Kim D; Nam H; Jo H; Kim KH; Ban C; Ahn KH Chem Commun (Camb); 2012 Mar; 48(26):3206-8. PubMed ID: 22331239 [TBL] [Abstract][Full Text] [Related]
10. A cholic acid-based fluorescent chemosenor for the detection of ATP. Wang H; Chan WH Org Biomol Chem; 2008 Jan; 6(1):162-8. PubMed ID: 18075662 [TBL] [Abstract][Full Text] [Related]
11. Novel reversible Zn2+-assisted biological phosphate "turn-on" probing through stable aryl-hydrazone salicylaldimine conjugation that attenuates ligand hydrolysis. Tsay OG; Manjare ST; Kim H; Lee KM; Lee YS; Churchill DG Inorg Chem; 2013 Sep; 52(17):10052-61. PubMed ID: 23944230 [TBL] [Abstract][Full Text] [Related]
12. Cation coordination induced modulation of the anion sensing properties of a ferrocene-imidazophenanthroline dyad: multichannel recognition from phosphate-related to chloride anions. Zapata F; Caballero A; Espinosa A; Tárraga A; Molina P J Org Chem; 2008 Jun; 73(11):4034-44. PubMed ID: 18433179 [TBL] [Abstract][Full Text] [Related]
13. Lower rim 1,3-diderivative of calix[4]arene-appended salicylidene imine (H(2)L): experimental and computational studies of the selective recognition of H(2)L toward Zn(2+) and sensing phosphate and amino acid by [ZnL]. Joseph R; Chinta JP; Rao CP J Org Chem; 2010 May; 75(10):3387-95. PubMed ID: 20392050 [TBL] [Abstract][Full Text] [Related]
14. Recognition of AMP, ADP and ATP through Cooperative Binding by Cu(II) and Zn(II) Complexes Containing Urea and/or Phenylboronic-Acid Moieties. Carreira-Barral I; Fernández-Pérez I; Mato-Iglesias M; de Blas A; Platas-Iglesias C; Esteban-Gómez D Molecules; 2018 Feb; 23(2):. PubMed ID: 29470445 [TBL] [Abstract][Full Text] [Related]
15. Highly selective recognition and fluorescence imaging of adenosine polyphosphates in aqueous solution. Zhang M; Ma WJ; He CT; Jiang L; Lu TB Inorg Chem; 2013 May; 52(9):4873-9. PubMed ID: 23560560 [TBL] [Abstract][Full Text] [Related]
16. Adenosine/guanosine-3',5'-bis-phosphates as biocompatible and selective Zn2+-ion chelators. Characterization and comparison with adenosine/guanosine-5'-di-phosphate. Sayer AH; Blum E; Major DT; Vardi-Kilshtain A; Levi Hevroni B; Fischer B Dalton Trans; 2015 Apr; 44(16):7305-17. PubMed ID: 25797179 [TBL] [Abstract][Full Text] [Related]
17. Interaction of Ant-ATP with tubulin: evidence for ATP competition for the GTP E-site on tubulin. Rai SS; Kasturi SR Arch Biochem Biophys; 1993 Oct; 306(1):133-8. PubMed ID: 8215393 [TBL] [Abstract][Full Text] [Related]
18. A Fluorescence Sensor Array Based on Zinc(II)-Carboxyamidoquinolines: Toward Quantitative Detection of ATP*. Pushina M; Farshbaf S; Mochida W; Kanakubo M; Nishiyabu R; Kubo Y; Anzenbacher P Chemistry; 2021 Aug; 27(44):11344-11351. PubMed ID: 34129701 [TBL] [Abstract][Full Text] [Related]
19. Zn(II) complex of terpyridine for the highly selective fluorescent recognition of pyrophosphate. Liang LJ; Zhao XJ; Huang CZ Analyst; 2012 Feb; 137(4):953-8. PubMed ID: 22183691 [TBL] [Abstract][Full Text] [Related]
20. A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state. Bencini A; Berni E; Bianchi A; Fornasari P; Giorgi C; Lima JC; Lodeiro C; Melo MJ; de Melo JS; Parola AJ; Pina F; Pina J; Valtancoli B Dalton Trans; 2004 Jul; (14):2180-7. PubMed ID: 15249955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]