BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 22201518)

  • 21. A deformable surface model for real-time water drop animation.
    Zhang Y; Wang H; Wang S; Tong Y; Zhou K
    IEEE Trans Vis Comput Graph; 2012 Aug; 18(8):1281-9. PubMed ID: 21860062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel and global approach of the complex and interconnected phenomena related to the contact line movement past a solid surface from hydrophobized silica gel.
    Suciu CV; Iwatsubo T; Yaguchi K; Ikenaga M
    J Colloid Interface Sci; 2005 Mar; 283(1):196-214. PubMed ID: 15694440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Water slug formation and motion in gas flow channels: the effects of geometry, surface wettability, and gravity.
    Cheah MJ; Kevrekidis IG; Benziger JB
    Langmuir; 2013 Aug; 29(31):9918-34. PubMed ID: 23876035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spreading of liquid drops over dry porous layers: complete wetting case.
    Starov VM; Kostvintsev SR; Sobolev VD; Velarde MG; Zhdanov SA
    J Colloid Interface Sci; 2002 Aug; 252(2):397-408. PubMed ID: 16290805
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Slip-stick wetting and large contact angle hysteresis on wrinkled surfaces.
    Bukowsky C; Torres JM; Vogt BD
    J Colloid Interface Sci; 2011 Feb; 354(2):825-31. PubMed ID: 21145561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How to make water run uphill.
    Chaudhury MK; Whitesides GM
    Science; 1992 Jun; 256(5063):1539-41. PubMed ID: 17836321
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon.
    Zhu L; Xiu Y; Xu J; Tamirisa PA; Hess DW; Wong CP
    Langmuir; 2005 Nov; 21(24):11208-12. PubMed ID: 16285792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermocapillary motion of a liquid drop on a horizontal solid surface.
    Pratap V; Moumen N; Subramanian RS
    Langmuir; 2008 May; 24(9):5185-93. PubMed ID: 18399689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Motion of drops on a surface induced by thermal gradient and vibration.
    Mettu S; Chaudhury MK
    Langmuir; 2008 Oct; 24(19):10833-7. PubMed ID: 18720961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct observation of drops on slippery lubricant-infused surfaces.
    Schellenberger F; Xie J; Encinas N; Hardy A; Klapper M; Papadopoulos P; Butt HJ; Vollmer D
    Soft Matter; 2015 Oct; 11(38):7617-26. PubMed ID: 26291621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contact-line friction of liquid drops on self-assembled monolayers: chain-length effects.
    Voué M; Rioboo R; Adao MH; Conti J; Bondar AI; Ivanov DA; Blake TD; De Coninck J
    Langmuir; 2007 Apr; 23(9):4695-9. PubMed ID: 17388611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contact-Angle Hysteresis and Contact-Line Friction on Slippery Liquid-like Surfaces.
    Barrio-Zhang H; Ruiz-Gutiérrez É; Armstrong S; McHale G; Wells GG; Ledesma-Aguilar R
    Langmuir; 2020 Dec; 36(49):15094-15101. PubMed ID: 33258609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20972-8. PubMed ID: 26331793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contact angle hysteresis on fluoropolymer surfaces.
    Tavana H; Jehnichen D; Grundke K; Hair ML; Neumann AW
    Adv Colloid Interface Sci; 2007 Oct; 134-135():236-48. PubMed ID: 17537391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transition from Cassie to impaled state during drop impact on groove-textured solid surfaces.
    Vaikuntanathan V; Sivakumar D
    Soft Matter; 2014 May; 10(17):2991-3002. PubMed ID: 24695648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of air and water vapor environments on the hydrophobicity of surfaces.
    Weisensee PB; Neelakantan NK; Suslick KS; Jacobi AM; King WP
    J Colloid Interface Sci; 2015 Sep; 453():177-185. PubMed ID: 25985421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microscopic description of a drop on a solid surface.
    Ruckenstein E; Berim GO
    Adv Colloid Interface Sci; 2010 Jun; 157(1-2):1-33. PubMed ID: 20362270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Super-hydrophobic, highly adhesive, polydimethylsiloxane (PDMS) surfaces.
    Stanton MM; Ducker RE; MacDonald JC; Lambert CR; McGimpsey WG
    J Colloid Interface Sci; 2012 Feb; 367(1):502-8. PubMed ID: 22129630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic measurement of the force required to move a liquid drop on a solid surface.
    Pilat DW; Papadopoulos P; Schäffel D; Vollmer D; Berger R; Butt HJ
    Langmuir; 2012 Dec; 28(49):16812-20. PubMed ID: 23181385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wetting study of patterned surfaces for superhydrophobicity.
    Bhushan B; Chae Jung Y
    Ultramicroscopy; 2007 Oct; 107(10-11):1033-41. PubMed ID: 17553620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.