BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 22201529)

  • 1. Multiple origins of endosymbiosis within the Enterobacteriaceae (γ-Proteobacteria): convergence of complex phylogenetic approaches.
    Husník F; Chrudimský T; Hypša V
    BMC Biol; 2011 Dec; 9():87. PubMed ID: 22201529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenophonus and Sodalis Symbionts in Louse Flies: an Analogy to the Wigglesworthia and Sodalis System in Tsetse Flies.
    Nováková E; Husník F; Šochová E; Hypša V
    Appl Environ Microbiol; 2015 Sep; 81(18):6189-99. PubMed ID: 26150448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductive evolution of bacterial genome in insect gut environment.
    Nikoh N; Hosokawa T; Oshima K; Hattori M; Fukatsu T
    Genome Biol Evol; 2011; 3():702-14. PubMed ID: 21737395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution.
    Nováková E; Hypsa V; Moran NA
    BMC Microbiol; 2009 Jul; 9():143. PubMed ID: 19619300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs.
    Kikuchi Y; Hosokawa T; Nikoh N; Meng XY; Kamagata Y; Fukatsu T
    BMC Biol; 2009 Jan; 7():2. PubMed ID: 19146674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria.
    Hosokawa T; Kikuchi Y; Nikoh N; Shimada M; Fukatsu T
    PLoS Biol; 2006 Oct; 4(10):e337. PubMed ID: 17032065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Buchnera has changed flatmate but the repeated replacement of co-obligate symbionts is not associated with the ecological expansions of their aphid hosts.
    Meseguer AS; Manzano-Marín A; Coeur d'Acier A; Clamens AL; Godefroid M; Jousselin E
    Mol Ecol; 2017 Apr; 26(8):2363-2378. PubMed ID: 27862540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Freeloader? The Highly Eroded Yet Large Genome of the Serratia symbiotica Symbiont of Cinara strobi.
    Manzano-Marín A; Coeur d'acier A; Clamens AL; Orvain C; Cruaud C; Barbe V; Jousselin E
    Genome Biol Evol; 2018 Sep; 10(9):2178-2189. PubMed ID: 30102395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonhomogeneous model of sequence evolution indicates independent origins of primary endosymbionts within the enterobacteriales (gamma-Proteobacteria).
    Herbeck JT; Degnan PH; Wernegreen JJ
    Mol Biol Evol; 2005 Mar; 22(3):520-32. PubMed ID: 15525700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two species of symbiotic bacteria present in the soybean aphid (Hemiptera: Aphididae).
    Wille BD; Hartman GL
    Environ Entomol; 2009 Feb; 38(1):110-5. PubMed ID: 19791603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Winding paths to simplicity: genome evolution in facultative insect symbionts.
    Lo WS; Huang YY; Kuo CH
    FEMS Microbiol Rev; 2016 Nov; 40(6):855-874. PubMed ID: 28204477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential genome evolution between companion symbionts in an insect-bacterial symbiosis.
    Bennett GM; McCutcheon JP; MacDonald BR; Romanovicz D; Moran NA
    mBio; 2014 Sep; 5(5):e01697-14. PubMed ID: 25271287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative molecular evolution of primary (Buchnera) and secondary symbionts of aphids based on two protein-coding genes.
    Moya A; Latorre A; Sabater-Muñoz B; Silva FJ
    J Mol Evol; 2002 Aug; 55(2):127-37. PubMed ID: 12107590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An effect of 16S rRNA intercistronic variability on coevolutionary analysis in symbiotic bacteria: molecular phylogeny of Arsenophonus triatominarum.
    Sorfová P; Skeríková A; Hypsa V
    Syst Appl Microbiol; 2008 Jun; 31(2):88-100. PubMed ID: 18485654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of genome evolution in facultative symbionts of aphids.
    Degnan PH; Leonardo TE; Cass BN; Hurwitz B; Stern D; Gibbs RA; Richards S; Moran NA
    Environ Microbiol; 2010 Aug; 12(8):2060-9. PubMed ID: 21966902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Candidatus Sodalis melophagi sp. nov.: phylogenetically independent comparative model to the tsetse fly symbiont Sodalis glossinidius.
    Chrudimský T; Husník F; Nováková E; Hypša V
    PLoS One; 2012; 7(7):e40354. PubMed ID: 22815743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Population dynamics of Glossina palpalis gambiensis symbionts, Sodalis glossinidius, and Wigglesworthia glossinidia, throughout host-fly development.
    Hamidou Soumana I; Berthier D; Tchicaya B; Thevenon S; Njiokou F; Cuny G; Geiger A
    Infect Genet Evol; 2013 Jan; 13():41-8. PubMed ID: 23107774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host-symbiont stability and fast evolutionary rates in an ant-bacterium association: cospeciation of camponotus species and their endosymbionts, candidatus blochmannia.
    Degnan PH; Lazarus AB; Brock CD; Wernegreen JJ
    Syst Biol; 2004 Feb; 53(1):95-110. PubMed ID: 14965905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into the transmission biology and species-specific functional capabilities of tsetse (Diptera: glossinidae) obligate symbiont Wigglesworthia.
    Rio RV; Symula RE; Wang J; Lohs C; Wu YN; Snyder AK; Bjornson RD; Oshima K; Biehl BS; Perna NT; Hattori M; Aksoy S
    mBio; 2012; 3(1):. PubMed ID: 22334516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Cost of Metabolic Interactions in Symbioses between Insects and Bacteria with Reduced Genomes.
    Ankrah NYD; Chouaia B; Douglas AE
    mBio; 2018 Sep; 9(5):. PubMed ID: 30254121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.