BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 22201601)

  • 1. Regulation of glycolytic and mitochondrial metabolism by ras.
    Chesney J; Telang S
    Curr Pharm Biotechnol; 2013; 14(3):251-60. PubMed ID: 22201601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies.
    Zhou L; Stanley WC; Saidel GM; Yu X; Cabrera ME
    J Physiol; 2005 Dec; 569(Pt 3):925-37. PubMed ID: 16223766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HIF1α-dependent uncoupling of glycolysis suppresses tumor cell proliferation.
    Urrutia AA; Mesa-Ciller C; Guajardo-Grence A; Alkan HF; Soro-Arnáiz I; Vandekeere A; Ferreira Campos AM; Igelmann S; Fernández-Arroyo L; Rinaldi G; Lorendeau D; De Bock K; Fendt SM; Aragonés J
    Cell Rep; 2024 Apr; 43(4):114103. PubMed ID: 38607920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype.
    de Groof AJ; te Lindert MM; van Dommelen MM; Wu M; Willemse M; Smift AL; Winer M; Oerlemans F; Pluk H; Fransen JA; Wieringa B
    Mol Cancer; 2009 Jul; 8():54. PubMed ID: 19646236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and tumor cell glycolysis.
    Chesney J
    Curr Opin Clin Nutr Metab Care; 2006 Sep; 9(5):535-9. PubMed ID: 16912547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer.
    Yalcin A; Telang S; Clem B; Chesney J
    Exp Mol Pathol; 2009 Jun; 86(3):174-9. PubMed ID: 19454274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transglutaminase 2 reprogramming of glucose metabolism in mammary epithelial cells via activation of inflammatory signaling pathways.
    Kumar S; Donti TR; Agnihotri N; Mehta K
    Int J Cancer; 2014 Jun; 134(12):2798-807. PubMed ID: 24477458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Flux Balance of Glucose Metabolism Clarifies the Requirements of the Warburg Effect.
    Dai Z; Shestov AA; Lai L; Locasale JW
    Biophys J; 2016 Sep; 111(5):1088-100. PubMed ID: 27602736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low glucose stress decreases cellular NADH and mitochondrial ATP in colonic epithelial cancer cells: Influence of mitochondrial substrates.
    Circu ML; Maloney RE; Aw TY
    Chem Biol Interact; 2017 Feb; 264():16-24. PubMed ID: 28087461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer.
    Li C; Zhang G; Zhao L; Ma Z; Chen H
    World J Surg Oncol; 2016 Jan; 14(1):15. PubMed ID: 26791262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation by different oncogenes relies on specific metabolic adaptations.
    Peruzzo P; Comelli M; Di Giorgio E; Franforte E; Mavelli I; Brancolini C
    Cell Cycle; 2016 Oct; 15(19):2656-2668. PubMed ID: 27485932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal regulation of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes.
    Ainscow EK; Brand MD
    Eur J Biochem; 1999 Dec; 266(3):737-49. PubMed ID: 10583367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs.
    Zhou L; Cabrera ME; Huang H; Yuan CL; Monika DK; Sharma N; Bian F; Stanley WC
    J Physiol; 2007 Mar; 579(Pt 3):811-21. PubMed ID: 17185335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The oncoprotein H-RasV12 increases mitochondrial metabolism.
    Telang S; Lane AN; Nelson KK; Arumugam S; Chesney J
    Mol Cancer; 2007 Dec; 6():77. PubMed ID: 18053146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interplay Between HGF/SF-Met-Ras Signaling, Tumor Metabolism and Blood Flow as a Potential Target for Breast Cancer Therapy.
    Natan S; Tsarfaty G; Horev J; Haklai R; Kloog Y; Tsarfaty I
    Oncoscience; 2014; 1(1):30-38. PubMed ID: 25593982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The redox switch/redox coupling hypothesis.
    Cerdán S; Rodrigues TB; Sierra A; Benito M; Fonseca LL; Fonseca CP; García-Martín ML
    Neurochem Int; 2006; 48(6-7):523-30. PubMed ID: 16530294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells.
    Feron O
    Radiother Oncol; 2009 Sep; 92(3):329-33. PubMed ID: 19604589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caffeic Acid Targets AMPK Signaling and Regulates Tricarboxylic Acid Cycle Anaplerosis while Metformin Downregulates HIF-1α-Induced Glycolytic Enzymes in Human Cervical Squamous Cell Carcinoma Lines.
    Tyszka-Czochara M; Bukowska-Strakova K; Kocemba-Pilarczyk KA; Majka M
    Nutrients; 2018 Jun; 10(7):. PubMed ID: 29958416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Including the mitochondrial metabolism of L-lactate in cancer metabolic reprogramming.
    de Bari L; Atlante A
    Cell Mol Life Sci; 2018 Aug; 75(15):2763-2776. PubMed ID: 29728715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of hypoxia-induced metabolic reprogramming.
    Yang C; Jiang L; Zhang H; Shimoda LA; DeBerardinis RJ; Semenza GL
    Methods Enzymol; 2014; 542():425-55. PubMed ID: 24862279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.