BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 22201760)

  • 41. Steady-state kinetic mechanism of the proline:ubiquinone oxidoreductase activity of proline utilization A (PutA) from Escherichia coli.
    Moxley MA; Tanner JJ; Becker DF
    Arch Biochem Biophys; 2011 Dec; 516(2):113-20. PubMed ID: 22040654
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DNA sequence of the putA gene from Salmonella typhimurium: a bifunctional membrane-associated dehydrogenase that binds DNA.
    Allen SW; Senti-Willis A; Maloy SR
    Nucleic Acids Res; 1993 Apr; 21(7):1676. PubMed ID: 8479928
    [No Abstract]   [Full Text] [Related]  

  • 43. Structural basis of the transcriptional regulation of the proline utilization regulon by multifunctional PutA.
    Zhou Y; Larson JD; Bottoms CA; Arturo EC; Henzl MT; Jenkins JL; Nix JC; Becker DF; Tanner JJ
    J Mol Biol; 2008 Aug; 381(1):174-88. PubMed ID: 18586269
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulatory region with putA gene of proline dehydrogenase that links to the lum and the lux operons in Photobacterium leiognathi.
    Lin JW; Yu KY; Chen HY; Weng SF
    Biochem Biophys Res Commun; 1996 Feb; 219(3):868-75. PubMed ID: 8645272
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxygen reactivity of PutA from Helicobacter species and proline-linked oxidative stress.
    Krishnan N; Becker DF
    J Bacteriol; 2006 Feb; 188(4):1227-35. PubMed ID: 16452403
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure-based engineering of minimal proline dehydrogenase domains for inhibitor discovery.
    Bogner AN; Ji J; Tanner JJ
    Protein Eng Des Sel; 2022 Feb; 35():. PubMed ID: 36448708
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural determinants of oligomerization of δ(1)-pyrroline-5-carboxylate dehydrogenase: identification of a hexamerization hot spot.
    Luo M; Singh RK; Tanner JJ
    J Mol Biol; 2013 Sep; 425(17):3106-20. PubMed ID: 23747974
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Rhizobium meliloti putA gene: its role in the establishment of the symbiotic interaction with alfalfa.
    Jiménez-Zurdo JI; García-Rodríguez FM; Toro N
    Mol Microbiol; 1997 Jan; 23(1):85-93. PubMed ID: 9004223
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Crystal structure of Thermus thermophilus Delta1-pyrroline-5-carboxylate dehydrogenase.
    Inagaki E; Ohshima N; Takahashi H; Kuroishi C; Yokoyama S; Tahirov TH
    J Mol Biol; 2006 Sep; 362(3):490-501. PubMed ID: 16934832
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Flavin redox state triggers conformational changes in the PutA protein from Escherichia coli.
    Zhu W; Becker DF
    Biochemistry; 2003 May; 42(18):5469-77. PubMed ID: 12731889
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Divergent structure and regulatory mechanism of proline catabolic systems: characterization of the putAP proline catabolic operon of Pseudomonas aeruginosa PAO1 and its regulation by PruR, an AraC/XylS family protein.
    Nakada Y; Nishijyo T; Itoh Y
    J Bacteriol; 2002 Oct; 184(20):5633-40. PubMed ID: 12270821
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The structure of the proline utilization a proline dehydrogenase domain inactivated by N-propargylglycine provides insight into conformational changes induced by substrate binding and flavin reduction.
    Srivastava D; Zhu W; Johnson WH; Whitman CP; Becker DF; Tanner JJ
    Biochemistry; 2010 Jan; 49(3):560-9. PubMed ID: 19994913
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification and characterization of the DNA-binding domain of the multifunctional PutA flavoenzyme.
    Gu D; Zhou Y; Kallhoff V; Baban B; Tanner JJ; Becker DF
    J Biol Chem; 2004 Jul; 279(30):31171-6. PubMed ID: 15155740
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proline dehydrogenase activity of the transcriptional repressor PutA is required for induction of the put operon by proline.
    Muro-Pastor AM; Maloy S
    J Biol Chem; 1995 Apr; 270(17):9819-27. PubMed ID: 7730362
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of proline utilization in Salmonella typhimurium: a membrane-associated dehydrogenase binds DNA in vitro.
    Ostrovsky de Spicer P; O'Brien K; Maloy S
    J Bacteriol; 1991 Jan; 173(1):211-9. PubMed ID: 1987118
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The PutA protein of Salmonella typhimurium catalyzes the two steps of proline degradation via a leaky channel.
    Surber MW; Maloy S
    Arch Biochem Biophys; 1998 Jun; 354(2):281-7. PubMed ID: 9637737
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Probing a hydrogen bond pair and the FAD redox properties in the proline dehydrogenase domain of Escherichia coli PutA.
    Baban BA; Vinod MP; Tanner JJ; Becker DF
    Biochim Biophys Acta; 2004 Sep; 1701(1-2):49-59. PubMed ID: 15450175
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sinorhizobium meliloti putA gene regulation: a new model within the family Rhizobiaceae.
    Soto MJ; Jiménez-Zurdo JI; van Dillewijn P; Toro N
    J Bacteriol; 2000 Apr; 182(7):1935-41. PubMed ID: 10715000
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The putA gene of Agrobacterium tumefaciens is transcriptionally activated in response to proline by an Lrp-like protein and is not autoregulated.
    Cho K; Winans SC
    Mol Microbiol; 1996 Dec; 22(5):1025-33. PubMed ID: 8971722
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Proline utilization A controls bacterial pathogenicity by sensing its substrate and cofactors.
    Ye P; Li X; Cui B; Song S; Shen F; Chen X; Wang G; Zhou X; Deng Y
    Commun Biol; 2022 May; 5(1):496. PubMed ID: 35614320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.