These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22202809)

  • 1. Disruption of a glutathione reductase encoding gene in Acremonium chrysogenum leads to reduction of its growth, cephalosporin production and antioxidative ability which is recovered by exogenous methionine.
    Long LK; Yang J; An Y; Liu G
    Fungal Genet Biol; 2012 Feb; 49(2):114-22. PubMed ID: 22202809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The thioredoxin reductase-encoding gene ActrxR1 is involved in the cephalosporin C production of Acremonium chrysogenum in methionine-supplemented medium.
    Liu L; Long LK; An Y; Yang J; Xu X; Hu CH; Liu G
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2551-62. PubMed ID: 22926582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A septation related gene AcsepH in Acremonium chrysogenum is involved in the cellular differentiation and cephalosporin production.
    Long LK; Wang Y; Yang J; Xu X; Liu G
    Fungal Genet Biol; 2013 Jan; 50():11-20. PubMed ID: 23201539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The autophagy-related gene Acatg1 is involved in conidiation and cephalosporin production in Acremonium chrysogenum.
    Wang H; Pan Y; Hu P; Zhu Y; Li J; Jiang X; Liu G
    Fungal Genet Biol; 2014 Aug; 69():65-74. PubMed ID: 24963594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the production of cephalosporin C through modulating the autophagic process of Acremonium chrysogenum.
    Li H; Hu P; Wang Y; Pan Y; Liu G
    Microb Cell Fact; 2018 Nov; 17(1):175. PubMed ID: 30424777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted inactivation of the mecB gene, encoding cystathionine-gamma-lyase, shows that the reverse transsulfuration pathway is required for high-level cephalosporin biosynthesis in Acremonium chrysogenum C10 but not for methionine induction of the cephalosporin genes.
    Liu G; Casqueiro J; Bañuelos O; Cardoza RE; Gutiérrez S; Martín JF
    J Bacteriol; 2001 Mar; 183(5):1765-72. PubMed ID: 11160109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of the nitrogen regulatory gene AcareA in Acremonium chrysogenum leads to reduction of cephalosporin production and repression of nitrogen metabolism.
    Li J; Pan Y; Liu G
    Fungal Genet Biol; 2013 Dec; 61():69-79. PubMed ID: 24161729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AcstuA, which encodes an APSES transcription regulator, is involved in conidiation, cephalosporin biosynthesis and cell wall integrity of Acremonium chrysogenum.
    Hu P; Wang Y; Zhou J; Pan Y; Liu G
    Fungal Genet Biol; 2015 Oct; 83():26-40. PubMed ID: 26283234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutathione metabolism of Acremonium chrysogenum in relation to cephalosporin C production: is gamma-glutamyltransferase in the center?
    Nagy MA; Emri T; Fekete E; Sándor E; Springael JY; Penninckx MJ; Pócsi I
    Folia Microbiol (Praha); 2003; 48(2):149-55. PubMed ID: 12800495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CPCR1, but not its interacting transcription factor AcFKH1, controls fungal arthrospore formation in Acremonium chrysogenum.
    Hoff B; Schmitt EK; Kück U
    Mol Microbiol; 2005 Jun; 56(5):1220-33. PubMed ID: 15882416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum.
    Dreyer J; Eichhorn H; Friedlin E; Kürnsteiner H; Kück U
    Appl Environ Microbiol; 2007 May; 73(10):3412-22. PubMed ID: 17400783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Myb transcription factor represses conidiation and cephalosporin C production in Acremonium chrysogenum.
    Wang Y; Hu P; Li H; Wang Y; Long LK; Li K; Zhang X; Pan Y; Liu G
    Fungal Genet Biol; 2018 Sep; 118():1-9. PubMed ID: 29870835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining an optimal carbon source/methionine feed strategy for growth and cephalosporin C formation by Cephalosporium acremonium.
    Vicik SM; Fedor AJ; Swartz RW
    Biotechnol Prog; 1990; 6(5):333-40. PubMed ID: 1366872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and Characterization of an Autophagy-Related Gene Acatg12 in Acremonium chrysogenum.
    Chen C; He J; Gao W; Wei Y; Liu G
    Curr Microbiol; 2019 May; 76(5):545-551. PubMed ID: 30899986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A moderate amplification of the mecB gene encoding cystathionine-gamma-lyase stimulates cephalosporin biosynthesis in Acremonium chrysogenum.
    Kosalková K; Marcos AT; Martín JF
    J Ind Microbiol Biotechnol; 2001 Oct; 27(4):252-8. PubMed ID: 11687939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AcAxl2 and AcMst1 regulate arthrospore development and stress resistance in the cephalosporin C producer Acremonium chrysogenum.
    Kluge J; Kück U
    Curr Genet; 2018 Jun; 64(3):713-727. PubMed ID: 29209784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attenuation of hyperoxia-induced growth inhibition in H441 cells by gene transfer of mitochondrially targeted glutathione reductase.
    O'Donovan DJ; Katkin JP; Tamura T; Smith CV; Welty SE
    Am J Respir Cell Mol Biol; 2000 Jun; 22(6):732-8. PubMed ID: 10837371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional analysis of the selective autophagy related gene Acatg11 in Acremonium chrysogenum.
    Liu J; Hao T; Hu P; Pan Y; Jiang X; Liu G
    Fungal Genet Biol; 2017 Oct; 107():67-76. PubMed ID: 28830792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exogenous methionine increases levels of mRNAs transcribed from pcbAB, pcbC, and cefEF genes, encoding enzymes of the cephalosporin biosynthetic pathway, in Acremonium chrysogenum.
    Velasco J; Gutierrez S; Fernandez FJ; Marcos AT; Arenos C; Martin JF
    J Bacteriol; 1994 Feb; 176(4):985-91. PubMed ID: 8106341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of oxidized glutathione fermentation by thiol redox metabolism engineering in Saccharomyces cerevisiae.
    Hara KY; Aoki N; Kobayashi J; Kiriyama K; Nishida K; Araki M; Kondo A
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9771-8. PubMed ID: 26239069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.