These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 2220327)

  • 21. The metabolism of several carboxylic acids by lactic acid bacteria.
    Radler F; Bröhl K
    Z Lebensm Unters Forsch; 1984 Sep; 179(3):228-31. PubMed ID: 6495871
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of aerobic and anaerobic atmosphere on acid production from sorbitol in suspensions of dental plaque and oral streptococci.
    Kalfas S; Birkhed D
    Caries Res; 1986; 20(3):237-43. PubMed ID: 3456846
    [No Abstract]   [Full Text] [Related]  

  • 23. On the formation of dental plaques.
    Gibbons RJ; van Houte J
    J Periodontol; 1973 Jun; 44(6):347-60. PubMed ID: 4575463
    [No Abstract]   [Full Text] [Related]  

  • 24. Acid-producing capacity from sugars and sugar alcohols among Lactobacillus isolates collected in connection with radiation therapy.
    Almståhl A; Rudbäck H; Basic A; Carlén A; Alstad T
    Arch Oral Biol; 2017 Dec; 84():82-88. PubMed ID: 28961513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth of micro-organisms from supragingival dental plaque on saliva agar.
    De Jong MH; Van der Hoeven JS; Van Os JH
    J Dent Res; 1986 Feb; 65(2):85-8. PubMed ID: 3455973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glucose uptake by Streptococcus mutans, Streptococcus mitis, and Actinomyces viscosus in the presence of human saliva.
    Germaine GR; Tellefson LM
    Infect Immun; 1982 Dec; 38(3):1060-7. PubMed ID: 7152663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transient acid-impairment of growth ability of oral Streptococcus, Actinomyces, and Lactobacillus: a possible ecological determinant in dental plaque.
    Horiuchi M; Washio J; Mayanagi H; Takahashi N
    Oral Microbiol Immunol; 2009 Aug; 24(4):319-24. PubMed ID: 19572895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acid production from sorbitol in human dental plaque.
    Birkhed D; Edwardsson S; Svensson B; Moskovitz F; Frostell G
    Arch Oral Biol; 1978; 23(11):971-5. PubMed ID: 35142
    [No Abstract]   [Full Text] [Related]  

  • 29. Glucose and sucrose fermenting capacity of homofermentative lactic acid bacteria used as starters in fermented salads.
    Bonestroo MH; Kusters BJ; de Wit JC; Rombouts FM
    Int J Food Microbiol; 1992; 15(3-4):365-76. PubMed ID: 1419542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of three-year consumption of erythritol, xylitol and sorbitol candies on various plaque and salivary caries-related variables.
    Runnel R; Mäkinen KK; Honkala S; Olak J; Mäkinen PL; Nõmmela R; Vahlberg T; Honkala E; Saag M
    J Dent; 2013 Dec; 41(12):1236-44. PubMed ID: 24095985
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacteria in human mouths involved in the production and utilization of hydrogen peroxide.
    Ryan CS; Kleinberg I
    Arch Oral Biol; 1995 Aug; 40(8):753-63. PubMed ID: 7487577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adaptation of salivary Lactobacillus strains to xylitol.
    Badet C; Richard B; Castaing-Debat M; de Flaujac PM; Dorignac G
    Arch Oral Biol; 2004 Feb; 49(2):161-4. PubMed ID: 14693211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Salivary gel-forming mucin MUC5B--a nutrient for dental plaque bacteria.
    Wickström C; Svensäter G
    Oral Microbiol Immunol; 2008 Jun; 23(3):177-82. PubMed ID: 18402602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. pH change in artificial dental plaque formed by glucosyltransferase and some oral bacteria during batch and continuous culture.
    Takehara T; Itoh M; Hanada N; Saeki E
    J Dent Res; 1985 Mar; 64(3):447-9. PubMed ID: 3156164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of xylitol on the acid production activity from sorbitol by Streptococcus mutans and human dental plaque.
    Sasaki N; Topitsoglou V; Frostell G
    Swed Dent J; 1983; 7(4):153-60. PubMed ID: 6580756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimation of growth parameters for some oral bacteria grown in continuous culture under glucose-limiting conditions.
    Rogers AH; de Jong MH; Zilm PS; van der Hoeven JS
    Infect Immun; 1986 Jun; 52(3):897-901. PubMed ID: 3710590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Caries-related plaque microcosm biofilms developed in microplates.
    Filoche SK; Soma KJ; Sissons CH
    Oral Microbiol Immunol; 2007 Apr; 22(2):73-9. PubMed ID: 17311629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of organic acids by dairy lactic acid bacteria.
    Hegazi FZ; Abo-Elnaga IG
    Zentralbl Bakteriol Naturwiss; 1980; 135(3):212-22. PubMed ID: 6775434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemical effects of and bacteriological response to sugar substitutes in the oral environment.
    Frostell G
    Pharmacol Ther Dent; 1978; 3(2-4):75-84. PubMed ID: 286372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Initial catabolism of sorbitol in Actinomyces naeslundii and Actinomyces viscosus.
    Kalfas S; Takahashi N; Yamada T
    Oral Microbiol Immunol; 1994 Dec; 9(6):372-5. PubMed ID: 7870473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.