These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2220358)

  • 1. Coexistence of localized scotomata and neovascularizations in proliferative diabetic retinopathy.
    Bek T
    Acta Ophthalmol (Copenh); 1990 Aug; 68(4):421-7. PubMed ID: 2220358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized retinal morphology and differential light sensitivity in diabetic retinopathy. Methodology and clinical results.
    Bek T
    Acta Ophthalmol Suppl (1985); 1992; (207):1-36. PubMed ID: 1486330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localised scotomata and types of vascular occlusion in diabetic retinopathy.
    Bek T
    Acta Ophthalmol (Copenh); 1991 Feb; 69(1):11-8. PubMed ID: 2028756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cotton-wool spots and retinal light sensitivity in diabetic retinopathy.
    Bek T; Lund-Andersen H
    Br J Ophthalmol; 1991 Jan; 75(1):13-7. PubMed ID: 1991079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localised blood-retinal barrier leakage and retinal light sensitivity in diabetic retinopathy.
    Bek T; Lund-Andersen H
    Br J Ophthalmol; 1990 Jul; 74(7):388-92. PubMed ID: 2378853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peripheral retinal evaluation comparing fundus photographs with fluorescein angiograms in patients with diabetes mellitus.
    Agardh E; Cavallin-Sjöberg U
    Retina; 1998; 18(5):420-3. PubMed ID: 9801036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous regression of neovascularization at the disk and elsewhere in diabetic retinopathy.
    Bandello F; Gass JD; Lattanzio R; Brancato R
    Am J Ophthalmol; 1996 Oct; 122(4):494-501. PubMed ID: 8862045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascular shunt of the optic disc resembling neovascularization in a diabetic patient with optic disc drusen.
    Karagiannis DA; Sampat V; Gregor Z
    Eur J Ophthalmol; 2006; 16(5):764-6. PubMed ID: 17061234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of vision in idiopathic macular holes with macular microperimetry using the scanning laser ophthalmoscope.
    Sjaarda RN; Frank DA; Glaser BM; Thompson JT; Murphy RP
    Ophthalmology; 1993 Oct; 100(10):1513-8. PubMed ID: 8414412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate superimposition of perimetry data onto fundus photographs.
    Bek T; Lund-Andersen H
    Acta Ophthalmol (Copenh); 1990 Feb; 68(1):11-8. PubMed ID: 2336927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of retinal neovascularizations using 45 degrees and 60 degrees photographic fields with varying 45 degrees fields simulated on a 60 degrees photograph.
    von Wendt G; Heikkilä K; Summanen P
    Acta Ophthalmol Scand; 2002 Aug; 80(4):372-8. PubMed ID: 12190778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Grading of diabetic retinopathy from non-stereoscopic color fundus photographs--relationship to fluorescein angiography findings and three-year prognosis].
    Kitano S
    Nippon Ganka Gakkai Zasshi; 2005 Sep; 109(9):563-72. PubMed ID: 16218434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is one 60 degrees fundus photograph sufficient for screening of proliferative diabetic retinopathy?
    Møller F; Hansen M; Sjølie AK
    Diabetes Care; 2001 Dec; 24(12):2083-5. PubMed ID: 11723087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Evaluation of Diabetic Retinopathy with Ultra-wide Field Fluorescein Angiography].
    Tomiyasu T; Hirahara S; Nozaki M; Yoshida M; Ogura Y
    Nippon Ganka Gakkai Zasshi; 2015 Nov; 119(11):807-11. PubMed ID: 26685485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of Retinal Neovascularization in Proliferative Diabetic Retinopathy Imaged by Optical Coherence Tomography Angiography.
    Ishibazawa A; Nagaoka T; Yokota H; Takahashi A; Omae T; Song YS; Takahashi T; Yoshida A
    Invest Ophthalmol Vis Sci; 2016 Nov; 57(14):6247-6255. PubMed ID: 27849310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison between wide-angle OCT angiography and ultra-wide field fluorescein angiography for detecting non-perfusion areas and retinal neovascularization in eyes with diabetic retinopathy.
    Sawada O; Ichiyama Y; Obata S; Ito Y; Kakinoki M; Sawada T; Saishin Y; Ohji M
    Graefes Arch Clin Exp Ophthalmol; 2018 Jul; 256(7):1275-1280. PubMed ID: 29713816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between scanning laser ophthalmoscope microperimetry and anatomic abnormalities in patients with subfoveal neovascularization.
    Tezel TH; Del Priore LV; Flowers BE; Grosof DH; Benenson IL; Zamora RL; Kaplan HJ
    Ophthalmology; 1996 Nov; 103(11):1829-36. PubMed ID: 8942878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated static perimetry as a screening method for evaluation of retinal perfusion in diabetic retinopathy.
    Pahor D
    Int Ophthalmol; 1997-1998; 21(6):305-9. PubMed ID: 9869337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photodynamic therapy with verteporfin for choroidal neovascularization in patients with diabetic retinopathy.
    Ladd BS; Solomon SD; Bressler NM; Bressler SB
    Am J Ophthalmol; 2001 Nov; 132(5):659-67. PubMed ID: 11704027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New vessels detected on wide-field imaging compared to two-field and seven-field imaging: implications for diabetic retinopathy screening image analysis.
    Talks SJ; Manjunath V; Steel DH; Peto T; Taylor R
    Br J Ophthalmol; 2015 Dec; 99(12):1606-9. PubMed ID: 26271269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.