These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22203786)

  • 1. The application of three-dimensional collagen-scaffolds seeded with myoblasts to repair skeletal muscle defects.
    Ma J; Holden K; Zhu J; Pan H; Li Y
    J Biomed Biotechnol; 2011; 2011():812135. PubMed ID: 22203786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds.
    Chen S; Nakamoto T; Kawazoe N; Chen G
    Biomaterials; 2015 Dec; 73():23-31. PubMed ID: 26398306
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Li MT; Ruehle MA; Stevens HY; Servies N; Willett NJ; Karthikeyakannan S; Warren GL; Guldberg RE; Krishnan L
    Tissue Eng Part A; 2017 Sep; 23(17-18):989-1000. PubMed ID: 28372522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient delivery of human single fiber-derived muscle precursor cells via biocompatible scaffold.
    Boldrin L; Malerba A; Vitiello L; Cimetta E; Piccoli M; Messina C; Gamba PG; Elvassore N; De Coppi P
    Cell Transplant; 2008; 17(5):577-84. PubMed ID: 18714677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle-Derived Stem Cell-Enriched Scaffolds Are Capable of Enhanced Healing of a Murine Volumetric Muscle Loss Defect.
    Wang HD; Lough DM; Kurlander DE; Lopez J; Quan A; Kumar AR
    Plast Reconstr Surg; 2019 Feb; 143(2):329e-339e. PubMed ID: 30531618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro cellular response to oxidized collagen-PLLA hybrid scaffolds designed for the repair of muscular tissue defects and complex incisional hernias.
    Pu F; Rhodes NP; Bayon Y; Hunt JA
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E454-E466. PubMed ID: 24668860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myoblast maturity on aligned microfiber bundles at the onset of strain application impacts myogenic outcomes.
    Somers SM; Zhang NY; Morrissette-McAlmon JBF; Tran K; Mao HQ; Grayson WL
    Acta Biomater; 2019 Aug; 94():232-242. PubMed ID: 31212110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recycled algae-based carbon materials as electroconductive 3D printed skeletal muscle tissue engineering scaffolds.
    Bilge S; Ergene E; Talak E; Gokyer S; Donar YO; Sınağ A; Yilgor Huri P
    J Mater Sci Mater Med; 2021 Jun; 32(7):73. PubMed ID: 34152502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyurethane scaffolds seeded with genetically engineered skeletal myoblasts: a promising tool to regenerate myocardial function.
    Blumenthal B; Golsong P; Poppe A; Heilmann C; Schlensak C; Beyersdorf F; Siepe M
    Artif Organs; 2010 Feb; 34(2):E46-54. PubMed ID: 20420589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro/nano-hierarchical scaffold fabricated using a cell electrospinning/3D printing process for co-culturing myoblasts and HUVECs to induce myoblast alignment and differentiation.
    Yeo M; Kim G
    Acta Biomater; 2020 Apr; 107():102-114. PubMed ID: 32142759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering a 3D in vitro model of human skeletal muscle at the single fiber scale.
    Urciuolo A; Serena E; Ghua R; Zatti S; Giomo M; Mattei N; Vetralla M; Selmin G; Luni C; Vitulo N; Valle G; Vitiello L; Elvassore N
    PLoS One; 2020; 15(5):e0232081. PubMed ID: 32374763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering functional and histological regeneration of vascularized skeletal muscle.
    Gilbert-Honick J; Iyer SR; Somers SM; Lovering RM; Wagner K; Mao HQ; Grayson WL
    Biomaterials; 2018 May; 164():70-79. PubMed ID: 29499437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further development of a tissue engineered muscle repair construct in vitro for enhanced functional recovery following implantation in vivo in a murine model of volumetric muscle loss injury.
    Corona BT; Machingal MA; Criswell T; Vadhavkar M; Dannahower AC; Bergman C; Zhao W; Christ GJ
    Tissue Eng Part A; 2012 Jun; 18(11-12):1213-28. PubMed ID: 22439962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of tissue-engineered skeletal muscle manufacturing variables.
    Wragg NM; Player DJ; Martin NRW; Liu Y; Lewis MP
    Biotechnol Bioeng; 2019 Sep; 116(9):2364-2376. PubMed ID: 31131874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic mechanical preconditioning improves engineered muscle contraction.
    Moon du G; Christ G; Stitzel JD; Atala A; Yoo JJ
    Tissue Eng Part A; 2008 Apr; 14(4):473-82. PubMed ID: 18399787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiologic stimulation improves myogenic potential of muscle precursor cells grown in a 3D collagen scaffold.
    Serena E; Flaibani M; Carnio S; Boldrin L; Vitiello L; De Coppi P; Elvassore N
    Neurol Res; 2008 Mar; 30(2):207-14. PubMed ID: 18397614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ cross-linked electrospun fiber scaffold of collagen for fabricating cell-dense muscle tissue.
    Takeda N; Tamura K; Mineguchi R; Ishikawa Y; Haraguchi Y; Shimizu T; Hara Y
    J Artif Organs; 2016 Jun; 19(2):141-8. PubMed ID: 26472433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional spherical gelatin bubble-based scaffold improves the myotube formation of H9c2 myoblasts.
    Mei C; Chao CW; Lin CW; Li ST; Wu KH; Yang KC; Yu J
    Biotechnol Bioeng; 2019 May; 116(5):1190-1200. PubMed ID: 30636318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun nanoyarn seeded with myoblasts induced from placental stem cells for the application of stress urinary incontinence sling: An in vitro study.
    Zhang K; Guo X; Li Y; Fu Q; Mo X; Nelson K; Zhao W
    Colloids Surf B Biointerfaces; 2016 Aug; 144():21-32. PubMed ID: 27060665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.