These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 22204120)

  • 1. Effect of side holes in cervical fusion cages: a finite element analysis study.
    Aslani FJ; Hukins DW; Shepherd DE
    Proc Inst Mech Eng H; 2011 Oct; 225(10):986-92. PubMed ID: 22204120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study.
    Vadapalli S; Sairyo K; Goel VK; Robon M; Biyani A; Khandha A; Ebraheim NA
    Spine (Phila Pa 1976); 2006 Dec; 31(26):E992-8. PubMed ID: 17172990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and finite-element evaluation of a versatile assembled lumbar interbody fusion cage.
    Ding JY; Qian S; Wan L; Huang B; Wang LG; Zhou Y
    Arch Orthop Trauma Surg; 2010 Apr; 130(4):565-71. PubMed ID: 20140621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The finite element analysis of polyetheretherketone/hydroxyapatite/carbon fiber cage].
    Liu X; Zhu H; Jing Y; Sui G; Zhang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Aug; 30(4):873-8. PubMed ID: 24059073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis.
    Polikeit A; Ferguson SJ; Nolte LP; Orr TE
    Eur Spine J; 2003 Aug; 12(4):413-20. PubMed ID: 12955610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The long-term mechanical integrity of non-reinforced PEEK-OPTIMA polymer for demanding spinal applications: experimental and finite-element analysis.
    Ferguson SJ; Visser JM; Polikeit A
    Eur Spine J; 2006 Feb; 15(2):149-56. PubMed ID: 15940477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Outcomes of interbody fusion cages used in 1 and 2-levels anterior cervical discectomy and fusion: titanium cages versus polyetheretherketone (PEEK) cages.
    Niu CC; Liao JC; Chen WJ; Chen LH
    J Spinal Disord Tech; 2010 Jul; 23(5):310-6. PubMed ID: 20124907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a low-cost polymethylmethacrylate stand-alone cervical cage: technical note.
    Brenke C; Pott P; Schwarz ML; Schmieder K; Barth M
    J Neurol Surg A Cent Eur Neurosurg; 2014 Jul; 75(4):317-22. PubMed ID: 24554608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The polymethyl methacrylate cervical cage for treatment of cervical disk disease Part III. Biomechanical properties.
    Chen JF; Lee ST
    Surg Neurol; 2006 Oct; 66(4):367-70; discussion 370. PubMed ID: 17015109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Static and dynamic fatigue behavior of topology designed and conventional 3D printed bioresorbable PCL cervical interbody fusion devices.
    Knutsen AR; Borkowski SL; Ebramzadeh E; Flanagan CL; Hollister SJ; Sangiorgio SN
    J Mech Behav Biomed Mater; 2015 Sep; 49():332-42. PubMed ID: 26072198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation--a finite element study.
    Tsuang YH; Chiang YF; Hung CY; Wei HW; Huang CH; Cheng CK
    Med Eng Phys; 2009 Jun; 31(5):565-70. PubMed ID: 19117789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The most appropriate titanium mesh cage size for anterior spinal reconstruction after single-level lumbar total en bloc spondylectomy: a finite element analysis and cadaveric validation study.
    Paholpak P; Sirichativapee W; Wisanuyotin T; Kosuwon W; Kasai Y; Murakami H
    J Orthop Surg Res; 2021 Mar; 16(1):178. PubMed ID: 33750424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of lumbar spinal fusion on the other lumbar intervertebral levels (three-dimensional finite element analysis).
    Goto K; Tajima N; Chosa E; Totoribe K; Kubo S; Kuroki H; Arai T
    J Orthop Sci; 2003; 8(4):577-84. PubMed ID: 12898313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of load sharing on uncovertebral and facet joints at the C5-6 level with implantation of the Bryan, Prestige LP, or ProDisc-C cervical disc prosthesis: an in vivo image-based finite element study.
    Kang H; Park P; La Marca F; Hollister SJ; Lin CY
    Neurosurg Focus; 2010 Jun; 28(6):E9. PubMed ID: 20568924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The importance of the endplate for interbody cages in the lumbar spine.
    Polikeit A; Ferguson SJ; Nolte LP; Orr TE
    Eur Spine J; 2003 Dec; 12(6):556-61. PubMed ID: 12783287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical assessment of a PEEK rod system for semi-rigid fixation of lumbar fusion constructs.
    Gornet MF; Chan FW; Coleman JC; Murrell B; Nockels RP; Taylor BA; Lanman TH; Ochoa JA
    J Biomech Eng; 2011 Aug; 133(8):081009. PubMed ID: 21950902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous titanium-6 aluminum-4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion.
    Wu SH; Li Y; Zhang YQ; Li XK; Yuan CF; Hao YL; Zhang ZY; Guo Z
    Artif Organs; 2013 Dec; 37(12):E191-201. PubMed ID: 24147953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The design, preparation and compressive strength testing of interbody fusion cages made from a composite of multi-amino acid copolymer/tri-calcium phosphate].
    Zhou C; Song Y; Tu C; Pei F; Duan H; Liu L; Li H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Dec; 28(6):1136-40. PubMed ID: 22295701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of spacer diameter of the Dynesys dynamic stabilization system on the biomechanics of the lumbar spine: a finite element analysis.
    Shih SL; Chen CS; Lin HM; Huang LY; Liu CL; Huang CH; Cheng CK
    J Spinal Disord Tech; 2012 Jul; 25(5):E140-9. PubMed ID: 22744611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of experimental compressive axial loading testing with a numerical simulation of topologically optimized cervical implants made by selective laser melting.
    Schnitzer M; Hudák R; Sedlačko P; Rajťúková V; Findrik Balogová A; Živčák J; Kula T; Bocko J; Džupon M; Ižaríková G; Karásek M; Filip V; Ivančová E; Šajty M; Szedlák P; Somoš A
    J Biotechnol; 2020 Oct; 322():33-42. PubMed ID: 32673686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.