BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 22204321)

  • 1. NAD+ metabolism and NAD(+)-dependent enzymes: promising therapeutic targets for neurological diseases.
    Ma Y; Chen H; He X; Nie H; Hong Y; Sheng C; Wang Q; Xia W; Ying W
    Curr Drug Targets; 2012 Feb; 13(2):222-9. PubMed ID: 22204321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NAD⁺/NADH metabolism and NAD⁺-dependent enzymes in cell death and ischemic brain injury: current advances and therapeutic implications.
    Ma Y; Nie H; Chen H; Li J; Hong Y; Wang B; Wang C; Zhang J; Cao W; Zhang M; Xu Y; Ding X; Yin SK; Qu X; Ying W
    Curr Med Chem; 2015; 22(10):1239-47. PubMed ID: 25666794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress and NAD+ in ischemic brain injury: current advances and future perspectives.
    Ying W; Xiong ZG
    Curr Med Chem; 2010; 17(20):2152-8. PubMed ID: 20423305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NAD+ and NADH in cellular functions and cell death.
    Ying W
    Front Biosci; 2006 Sep; 11():3129-48. PubMed ID: 16720381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes.
    Cantó C; Sauve AA; Bai P
    Mol Aspects Med; 2013 Dec; 34(6):1168-201. PubMed ID: 23357756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked?
    Zhang J
    Bioessays; 2003 Aug; 25(8):808-14. PubMed ID: 12879452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adipose tissue NAD
    Jokinen R; Pirnes-Karhu S; Pietiläinen KH; Pirinen E
    Redox Biol; 2017 Aug; 12():246-263. PubMed ID: 28279944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Poly(ADP-ribose) Polymerase-1 Enhances Gene Expression of Selected Sirtuins and APP Cleaving Enzymes in Amyloid Beta Cytotoxicity.
    Wencel PL; Lukiw WJ; Strosznajder JB; Strosznajder RP
    Mol Neurobiol; 2018 Jun; 55(6):4612-4623. PubMed ID: 28698968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of NAD(+) / NADH and NADP(+) / NADPH in cell death.
    Xia W; Wang Z; Wang Q; Han J; Zhao C; Hong Y; Zeng L; Tang L; Ying W
    Curr Pharm Des; 2009; 15(1):12-9. PubMed ID: 19149598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of NAD (+) , PARP-1, and Sirtuins in Cell Death, Ischemic Brain Injury, and Synchrotron Radiation X-Ray-Induced Tissue Injury.
    Ying W
    Scientifica (Cairo); 2013; 2013():691251. PubMed ID: 24386592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons.
    Liu D; Gharavi R; Pitta M; Gleichmann M; Mattson MP
    Neuromolecular Med; 2009; 11(1):28-42. PubMed ID: 19288225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NAD+ and NADH in ischemic brain injury.
    Ying W
    Front Biosci; 2008 Jan; 13():1141-51. PubMed ID: 17981619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PARP inhibition protects against alcoholic and non-alcoholic steatohepatitis.
    Mukhopadhyay P; Horváth B; Rajesh M; Varga ZV; Gariani K; Ryu D; Cao Z; Holovac E; Park O; Zhou Z; Xu MJ; Wang W; Godlewski G; Paloczi J; Nemeth BT; Persidsky Y; Liaudet L; Haskó G; Bai P; Boulares AH; Auwerx J; Gao B; Pacher P
    J Hepatol; 2017 Mar; 66(3):589-600. PubMed ID: 27984176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders.
    Jęśko H; Wencel P; Strosznajder RP; Strosznajder JB
    Neurochem Res; 2017 Mar; 42(3):876-890. PubMed ID: 27882448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders.
    Henning RJ; Bourgeois M; Harbison RD
    Cardiovasc Toxicol; 2018 Dec; 18(6):493-506. PubMed ID: 29968072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in the function and regulation of ADP-Ribosylation.
    Hottiger MO; Boothby M; Koch-Nolte F; Lüscher B; Martin NM; Plummer R; Wang ZQ; Ziegler M
    Sci Signal; 2011 May; 4(174):mr5. PubMed ID: 21610250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NAD+ metabolism in health and disease.
    Belenky P; Bogan KL; Brenner C
    Trends Biochem Sci; 2007 Jan; 32(1):12-9. PubMed ID: 17161604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple roles for poly(ADP-ribose)polymerase-1 in neurological disease.
    Kauppinen TM
    Neurochem Int; 2007 Jun; 50(7-8):954-8. PubMed ID: 17222947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NAD
    Dai Y; Lin J; Ren J; Zhu B; Wu C; Yu L
    Neurochem Int; 2022 Dec; 161():105435. PubMed ID: 36273706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sirtuins and their interactions with transcription factors and poly(ADP-ribose) polymerases.
    Jęśko H; Strosznajder RP
    Folia Neuropathol; 2016; 54(3):212-233. PubMed ID: 27764514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.