BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 22204321)

  • 21. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation.
    Bai P; Cantó C; Oudart H; Brunyánszki A; Cen Y; Thomas C; Yamamoto H; Huber A; Kiss B; Houtkooper RH; Schoonjans K; Schreiber V; Sauve AA; Menissier-de Murcia J; Auwerx J
    Cell Metab; 2011 Apr; 13(4):461-468. PubMed ID: 21459330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-canonical roles of NAMPT and PARP in inflammation.
    Martínez-Morcillo FJ; Cantón-Sandoval J; Martínez-Menchón T; Corbalán-Vélez R; Mesa-Del-Castillo P; Pérez-Oliva AB; García-Moreno D; Mulero V
    Dev Comp Immunol; 2021 Feb; 115():103881. PubMed ID: 33038343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NAD+ and sirtuins in aging and disease.
    Imai S; Guarente L
    Trends Cell Biol; 2014 Aug; 24(8):464-71. PubMed ID: 24786309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nicotinamide adenine dinucleotide homeostasis and signalling in heart disease: Pathophysiological implications and therapeutic potential.
    Mericskay M
    Arch Cardiovasc Dis; 2016 Mar; 109(3):207-15. PubMed ID: 26707577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Implication of poly (ADP-ribose) polymerase (PARP) in neurodegeneration and brain energy metabolism. Decreases in mouse brain NAD+ and ATP caused by MPTP are prevented by the PARP inhibitor benzamide.
    Cosi C; Marien M
    Ann N Y Acad Sci; 1999; 890():227-39. PubMed ID: 10668429
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent developments on the role of mitochondria in poly(ADP-ribose) polymerase inhibition.
    Klaidman LK; Yang J; Chang ML; Adams JD
    Curr Med Chem; 2003 Dec; 10(24):2669-78. PubMed ID: 14529457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mapping NAD(+) metabolism in the brain of ageing Wistar rats: potential targets for influencing brain senescence.
    Braidy N; Poljak A; Grant R; Jayasena T; Mansour H; Chan-Ling T; Guillemin GJ; Smythe G; Sachdev P
    Biogerontology; 2014 Apr; 15(2):177-98. PubMed ID: 24337988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus.
    Cantó C; Menzies KJ; Auwerx J
    Cell Metab; 2015 Jul; 22(1):31-53. PubMed ID: 26118927
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting NAD
    Ruan Q; Ruan J; Zhang W; Qian F; Yu Z
    Pharmacol Res; 2018 Feb; 128():345-358. PubMed ID: 28847709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellular NAD depletion and decline of SIRT1 activity play critical roles in PARP-1-mediated acute epileptic neuronal death in vitro.
    Wang S; Yang X; Lin Y; Qiu X; Li H; Zhao X; Cao L; Liu X; Pang Y; Wang X; Chi Z
    Brain Res; 2013 Oct; 1535():14-23. PubMed ID: 23994215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nicotinamide treatment reduces the levels of oxidative stress, apoptosis, and PARP-1 activity in Aβ(1-42)-induced rat model of Alzheimer's disease.
    Turunc Bayrakdar E; Uyanikgil Y; Kanit L; Koylu E; Yalcin A
    Free Radic Res; 2014 Feb; 48(2):146-58. PubMed ID: 24151909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly(ADP-ribose) polymerase 1 at the crossroad of metabolic stress and inflammation in aging.
    Altmeyer M; Hottiger MO
    Aging (Albany NY); 2009 May; 1(5):458-69. PubMed ID: 20157531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nicotinamide offers multiple protective mechanisms in stroke as a precursor for NAD+, as a PARP inhibitor and by partial restoration of mitochondrial function.
    Klaidman L; Morales M; Kem S; Yang J; Chang ML; Adams JD
    Pharmacology; 2003 Nov; 69(3):150-7. PubMed ID: 14512702
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences.
    Ying W
    Antioxid Redox Signal; 2008 Feb; 10(2):179-206. PubMed ID: 18020963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase.
    Endres M; Wang ZQ; Namura S; Waeber C; Moskowitz MA
    J Cereb Blood Flow Metab; 1997 Nov; 17(11):1143-51. PubMed ID: 9390645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Induction of ROS formation, poly(ADP-ribose) polymerase-1 activation, and cell death by PCB126 and PCB153 in human T47D and MDA-MB-231 breast cancer cells.
    Lin CH; Lin PH
    Chem Biol Interact; 2006 Aug; 162(2):181-94. PubMed ID: 16884709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of Nuclear NAD
    Brown EE; Scandura MJ; Pierce E
    Adv Exp Med Biol; 2023; 1415():235-239. PubMed ID: 37440039
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery.
    Khan JA; Forouhar F; Tao X; Tong L
    Expert Opin Ther Targets; 2007 May; 11(5):695-705. PubMed ID: 17465726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NAD+ and NADH in brain functions, brain diseases and brain aging.
    Ying W
    Front Biosci; 2007 Jan; 12():1863-88. PubMed ID: 17127427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NAD⁺ in aging, metabolism, and neurodegeneration.
    Verdin E
    Science; 2015 Dec; 350(6265):1208-13. PubMed ID: 26785480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.