These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 22204321)

  • 41. Implications of NAD
    Kang BE; Choi JY; Stein S; Ryu D
    Eur J Clin Invest; 2020 Oct; 50(10):e13334. PubMed ID: 32594513
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Poly(ADP-ribose) polymerase inhibitors.
    Southan GJ; Szabó C
    Curr Med Chem; 2003 Feb; 10(4):321-40. PubMed ID: 12570705
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats.
    Braidy N; Guillemin GJ; Mansour H; Chan-Ling T; Poljak A; Grant R
    PLoS One; 2011 Apr; 6(4):e19194. PubMed ID: 21541336
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Poly(ADP-Ribose) polymerase-1 in acute neuronal death and inflammation: a strategy for neuroprotection.
    Skaper SD
    Ann N Y Acad Sci; 2003 May; 993():217-28; discussion 287-8. PubMed ID: 12853316
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Review: NAD +: a modulator of immune functions.
    Grahnert A; Grahnert A; Klein C; Schilling E; Wehrhahn J; Hauschildt S
    Innate Immun; 2011 Apr; 17(2):212-33. PubMed ID: 20388721
    [TBL] [Abstract][Full Text] [Related]  

  • 46. AG-690/11026014, a novel PARP-1 inhibitor, protects cardiomyocytes from AngII-induced hypertrophy.
    Liu M; Li Z; Chen GW; Li ZM; Wang LP; Ye JT; Luo HB; Liu PQ
    Mol Cell Endocrinol; 2014 Jul; 392(1-2):14-22. PubMed ID: 24859603
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tankyrase-1 overexpression reduces genotoxin-induced cell death by inhibiting PARP1.
    Yeh TY; Sbodio JI; Nguyen MT; Meyer TN; Lee RM; Chi NW
    Mol Cell Biochem; 2005 Aug; 276(1-2):183-92. PubMed ID: 16132700
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NAD and the aging process: Role in life, death and everything in between.
    Chini CCS; Tarragó MG; Chini EN
    Mol Cell Endocrinol; 2017 Nov; 455():62-74. PubMed ID: 27825999
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A novel and potent poly(ADP-ribose) polymerase-1 inhibitor, FR247304 (5-chloro-2-[3-(4-phenyl-3,6-dihydro-1(2H)-pyridinyl)propyl]-4(3H)-quinazolinone), attenuates neuronal damage in in vitro and in vivo models of cerebral ischemia.
    Iwashita A; Tojo N; Matsuura S; Yamazaki S; Kamijo K; Ishida J; Yamamoto H; Hattori K; Matsuoka N; Mutoh S
    J Pharmacol Exp Ther; 2004 Aug; 310(2):425-36. PubMed ID: 15075382
    [TBL] [Abstract][Full Text] [Related]  

  • 50. NAD
    Zhang M; Ying W
    Antioxid Redox Signal; 2019 Feb; 30(6):890-905. PubMed ID: 29295624
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The dynamic regulation of NAD metabolism in mitochondria.
    Stein LR; Imai S
    Trends Endocrinol Metab; 2012 Sep; 23(9):420-8. PubMed ID: 22819213
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The potential regulatory roles of NAD(+) and its metabolism in autophagy.
    Zhang DX; Zhang JP; Hu JY; Huang YS
    Metabolism; 2016 Apr; 65(4):454-62. PubMed ID: 26975537
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Weight Loss Is Associated With Increased NAD(+)/SIRT1 Expression But Reduced PARP Activity in White Adipose Tissue.
    Rappou E; Jukarainen S; Rinnankoski-Tuikka R; Kaye S; Heinonen S; Hakkarainen A; Lundbom J; Lundbom N; Saunavaara V; Rissanen A; Virtanen KA; Pirinen E; Pietiläinen KH
    J Clin Endocrinol Metab; 2016 Mar; 101(3):1263-73. PubMed ID: 26760174
    [TBL] [Abstract][Full Text] [Related]  

  • 54. NAD+ as a metabolic link between DNA damage and cell death.
    Ying W; Alano CC; Garnier P; Swanson RA
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):216-23. PubMed ID: 15562437
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantitative Analysis of NAD Synthesis-Breakdown Fluxes.
    Liu L; Su X; Quinn WJ; Hui S; Krukenberg K; Frederick DW; Redpath P; Zhan L; Chellappa K; White E; Migaud M; Mitchison TJ; Baur JA; Rabinowitz JD
    Cell Metab; 2018 May; 27(5):1067-1080.e5. PubMed ID: 29685734
    [TBL] [Abstract][Full Text] [Related]  

  • 56. PARP-1 involvement in neurodegeneration: A focus on Alzheimer's and Parkinson's diseases.
    Martire S; Mosca L; d'Erme M
    Mech Ageing Dev; 2015 Mar; 146-148():53-64. PubMed ID: 25881554
    [TBL] [Abstract][Full Text] [Related]  

  • 57. SIRT1/PARP-1 functional interplay.
    Sassone-Corsi P
    Cell Cycle; 2009 Jun; 8(11):1649. PubMed ID: 19377281
    [No Abstract]   [Full Text] [Related]  

  • 58. Contrasting sirtuin and poly(ADP-ribose)polymerase activities of selected 2,4,6-trisubstituted benzimidazoles.
    Yeong KY; Tan SC; Mai CW; Leong CO; Chung FF; Lee YK; Chee CF; Abdul Rahman N
    Chem Biol Drug Des; 2018 Jan; 91(1):213-219. PubMed ID: 28719017
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolism and biochemical properties of nicotinamide adenine dinucleotide (NAD) analogs, nicotinamide guanine dinucleotide (NGD) and nicotinamide hypoxanthine dinucleotide (NHD).
    Yaku K; Okabe K; Gulshan M; Takatsu K; Okamoto H; Nakagawa T
    Sci Rep; 2019 Sep; 9(1):13102. PubMed ID: 31511627
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exploring the therapeutic space around NAD+.
    Houtkooper RH; Auwerx J
    J Cell Biol; 2012 Oct; 199(2):205-9. PubMed ID: 23071150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.