BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 22204764)

  • 21. Proteasome inhibitors in cancer therapy.
    Manasanch EE; Orlowski RZ
    Nat Rev Clin Oncol; 2017 Jul; 14(7):417-433. PubMed ID: 28117417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The resistance mechanisms of proteasome inhibitor bortezomib.
    Lü S; Wang J
    Biomark Res; 2013 Mar; 1(1):13. PubMed ID: 24252210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting Protein Degradation Pathways in Tumors: Focusing on their Role in Hematological Malignancies.
    Wolska-Washer A; Smolewski P
    Cancers (Basel); 2022 Aug; 14(15):. PubMed ID: 35954440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteasome inhibition and its therapeutic potential in multiple myeloma.
    Chari A; Mazumder A; Jagannath S
    Biologics; 2010 Sep; 4():273-87. PubMed ID: 21116326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteasome inhibitors in cancer therapy.
    Crawford LJ; Walker B; Irvine AE
    J Cell Commun Signal; 2011 Jun; 5(2):101-10. PubMed ID: 21484190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system.
    Dou QP; Zonder JA
    Curr Cancer Drug Targets; 2014; 14(6):517-36. PubMed ID: 25092212
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression of GITR Enhances Multiple Myeloma Cell Sensitivity to Bortezomib.
    Zhao Y; Zhang K; Li G; Zhang X; Shi D
    PLoS One; 2015; 10(5):e0127334. PubMed ID: 25973846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heat shock factor 1 is a potent therapeutic target for enhancing the efficacy of treatments for multiple myeloma with adverse prognosis.
    Bustany S; Cahu J; Descamps G; Pellat-Deceunynck C; Sola B
    J Hematol Oncol; 2015 Apr; 8():40. PubMed ID: 25898974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Overcoming bortezomib resistance in multiple myeloma.
    Murray MY; Auger MJ; Bowles KM
    Biochem Soc Trans; 2014 Aug; 42(4):804-8. PubMed ID: 25109961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From bortezomib to other inhibitors of the proteasome and beyond.
    Buac D; Shen M; Schmitt S; Kona FR; Deshmukh R; Zhang Z; Neslund-Dudas C; Mitra B; Dou QP
    Curr Pharm Des; 2013; 19(22):4025-38. PubMed ID: 23181572
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DeepAEG: a model for predicting cancer drug response based on data enhancement and edge-collaborative update strategies.
    Lao C; Zheng P; Chen H; Liu Q; An F; Li Z
    BMC Bioinformatics; 2024 Mar; 25(1):105. PubMed ID: 38461284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inferring circRNA-drug sensitivity associations via dual hierarchical attention networks and multiple kernel fusion.
    Lu S; Liang Y; Li L; Liao S; Zou Y; Yang C; Ouyang D
    BMC Genomics; 2023 Dec; 24(1):796. PubMed ID: 38129810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MNCLCDA: predicting circRNA-drug sensitivity associations by using mixed neighbourhood information and contrastive learning.
    Li G; Zeng F; Luo J; Liang C; Xiao Q
    BMC Med Inform Decis Mak; 2023 Dec; 23(1):291. PubMed ID: 38110886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteasome Inhibition Sensitizes Liposarcoma to MDM2 Inhibition with Nutlin-3 by Activating the ATF4/CHOP Stress Response Pathway.
    Ludwig MP; Galbraith MD; Eduthan NP; Hill AA; Clay MR; Tellez CM; Wilky BA; Elias A; Espinosa JM; Sullivan KD
    Cancer Res; 2023 Aug; 83(15):2543-2556. PubMed ID: 37205634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unfolded protein response and angiogenesis in malignancies.
    Izadpanah A; Willingham K; Chandrasekar B; Alt EU; Izadpanah R
    Biochim Biophys Acta Rev Cancer; 2023 Mar; 1878(2):188839. PubMed ID: 36414127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two novel piperidones induce apoptosis and antiproliferative effects on human prostate and lymphoma cancer cell lines.
    Swain RM; Contreras L; Varela-Ramirez A; Hossain M; Das U; Valenzuela CA; Penichet ML; Dimmock JR; Aguilera RJ
    Invest New Drugs; 2022 Oct; 40(5):905-921. PubMed ID: 35793039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Risk factors for renal impairment in patients with hematological cancer receiving antineoplastic treatment.
    Travassos PNC; de Barros Silva PG; Freitas MO; Braga MDM; Duarte FB; de Oliveira Maia JK; Pitombeira H; de Sousa JH; Alves APNN
    Support Care Cancer; 2022 Sep; 30(9):7271-7280. PubMed ID: 35596773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Establishment and characterization of a novel patient-derived Ewing sarcoma cell line, NCC-ES2-C1.
    Yoshimatsu Y; Noguchi R; Sin Y; Tsuchiya R; Ono T; Akiyama T; Nakagawa R; Kamio S; Hirabayashi K; Ozawa I; Kikuta K; Kondo T
    Hum Cell; 2022 Jul; 35(4):1262-1269. PubMed ID: 35441357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three novel piperidones exhibit tumor-selective cytotoxicity on leukemia cells via protein degradation and stress-mediated mechanisms.
    Contreras L; Medina S; Schiaffino Bustamante AY; Borrego EA; Valenzuela CA; Das U; Karki SS; Dimmock JR; Aguilera RJ
    Pharmacol Rep; 2022 Feb; 74(1):159-174. PubMed ID: 34448104
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CHIP/STUB1 Ubiquitin Ligase Functions as a Negative Regulator of ErbB2 by Promoting Its Early Post-Biosynthesis Degradation.
    Luan H; Bailey TA; Clubb RJ; Mohapatra BC; Bhat AM; Chakraborty S; Islam N; Mushtaq I; Storck MD; Raja SM; Band V; Band H
    Cancers (Basel); 2021 Aug; 13(16):. PubMed ID: 34439093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.