BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 22205608)

  • 1. Depth-dependent transverse shear properties of the human corneal stroma.
    Petsche SJ; Chernyak D; Martiz J; Levenston ME; Pinsky PM
    Invest Ophthalmol Vis Sci; 2012 Feb; 53(2):873-80. PubMed ID: 22205608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic shear properties of the corneal stroma.
    Hatami-Marbini H
    J Biomech; 2014 Feb; 47(3):723-8. PubMed ID: 24368145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The location- and depth-dependent mechanical response of the human cornea under shear loading.
    Sloan SR; Khalifa YM; Buckley MR
    Invest Ophthalmol Vis Sci; 2014 Oct; 55(12):7919-24. PubMed ID: 25358729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corneal resistance to shear force after UVA-riboflavin cross-linking.
    Søndergaard AP; Ivarsen A; Hjortdal J
    Invest Ophthalmol Vis Sci; 2013 Jul; 54(7):5059-69. PubMed ID: 23778880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anterior and posterior corneal stroma elasticity assessed using nanoindentation.
    Dias JM; Ziebarth NM
    Exp Eye Res; 2013 Oct; 115():41-6. PubMed ID: 23800511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery.
    Randleman JB; Dawson DG; Grossniklaus HE; McCarey BE; Edelhauser HF
    J Refract Surg; 2008 Jan; 24(1):S85-9. PubMed ID: 18269156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depth-Dependent Out-of-Plane Young's Modulus of the Human Cornea.
    Ramirez-Garcia MA; Sloan SR; Nidenberg B; Khalifa YM; Buckley MR
    Curr Eye Res; 2018 May; 43(5):595-604. PubMed ID: 29283675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressive moduli of the human medial meniscus in the axial and radial directions at equilibrium and at a physiological strain rate.
    Chia HN; Hull ML
    J Orthop Res; 2008 Jul; 26(7):951-6. PubMed ID: 18271010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corneal collagen cross-linking combined with simulation of femtosecond laser-assisted refractive lens extraction: an ex vivo biomechanical effect evaluation.
    Kanellopoulos AJ; Kontos MA; Chen S; Asimellis G
    Cornea; 2015 May; 34(5):550-6. PubMed ID: 25651497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delineating Corneal Elastic Anisotropy in a Porcine Model Using Noncontact OCT Elastography and Ex Vivo Mechanical Tests.
    Kirby MA; Pitre JJ; Liou HC; Li DS; Wang RK; Pelivanov I; O'Donnell M; Shen TT
    Ophthalmol Sci; 2021 Dec; 1(4):100058. PubMed ID: 36246948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-irradiance CXL combined with myopic LASIK: flap and residual stroma biomechanical properties studied ex-vivo.
    Kanellopoulos AJ; Asimellis G; Salvador-Culla B; Chodosh J; Ciolino JB
    Br J Ophthalmol; 2015 Jun; 99(6):870-4. PubMed ID: 25795914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corneal stromal elasticity and viscoelasticity assessed by atomic force microscopy after different cross linking protocols.
    Dias J; Diakonis VF; Lorenzo M; Gonzalez F; Porras K; Douglas S; Avila M; Yoo SH; Ziebarth NM
    Exp Eye Res; 2015 Sep; 138():1-5. PubMed ID: 26093276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear optical macroscopic assessment of 3-D corneal collagen organization and axial biomechanics.
    Winkler M; Chai D; Kriling S; Nien CJ; Brown DJ; Jester B; Juhasz T; Jester JV
    Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):8818-27. PubMed ID: 22003117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femtosecond laser cutting of multiple thin corneal stromal lamellae for endothelial bioengineering.
    Bernard A; He Z; Forest F; Gauthier AS; Peocʼh M; Dumollard JM; Acquart S; Montard R; Delbosc B; Gain P; Thuret G
    Cornea; 2015 Feb; 34(2):218-24. PubMed ID: 25474234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale Investigation of the Depth-Dependent Mechanical Anisotropy of the Human Corneal Stroma.
    Labate C; Lombardo M; De Santo MP; Dias J; Ziebarth NM; Lombardo G
    Invest Ophthalmol Vis Sci; 2015 Jun; 56(6):4053-60. PubMed ID: 26098472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental and theoretical analysis of unconfined compression of corneal stroma.
    Hatami-Marbini H; Etebu E
    J Biomech; 2013 Jun; 46(10):1752-8. PubMed ID: 23664313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydration dependent biomechanical properties of the corneal stroma.
    Hatami-Marbini H; Etebu E
    Exp Eye Res; 2013 Nov; 116():47-54. PubMed ID: 23891861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of normal compression on the shear modulus of soft tissue in rheological measurements.
    Ayyildiz M; Cinoglu S; Basdogan C
    J Mech Behav Biomed Mater; 2015 Sep; 49():235-43. PubMed ID: 26042768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructure of the posterior corneal stroma.
    Schlötzer-Schrehardt U; Bachmann BO; Tourtas T; Torricelli AA; Singh A; González S; Mei H; Deng SX; Wilson SE; Kruse FE
    Ophthalmology; 2015 Apr; 122(4):693-9. PubMed ID: 25458195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical study of the effect of corneal layered structure on ocular biomechanics.
    Elsheikh A; Ross S; Alhasso D; Rama P
    Curr Eye Res; 2009 Jan; 34(1):26-35. PubMed ID: 19172467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.