These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22205649)

  • 1. Glial-derived adenosine modulates spinal motor networks in mice.
    Witts EC; Panetta KM; Miles GB
    J Neurophysiol; 2012 Apr; 107(7):1925-34. PubMed ID: 22205649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of Glia Reveals Modulation of Mammalian Spinal Motor Networks by Adenosine.
    Acton D; Miles GB
    PLoS One; 2015; 10(8):e0134488. PubMed ID: 26252389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of spinal motor networks by astrocyte-derived adenosine is dependent on D
    Acton D; Broadhead MJ; Miles GB
    J Neurophysiol; 2018 Sep; 120(3):998-1009. PubMed ID: 29790837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms.
    Acevedo J; Santana-Almansa A; Matos-Vergara N; Marrero-Cordero LR; Cabezas-Bou E; Díaz-Ríos M
    Neuropharmacology; 2016 Feb; 101():490-505. PubMed ID: 26493631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anticonvulsant A(1) receptor-mediated adenosine action on neuronal networks in the brainstem-spinal cord of newborn rats.
    Brockhaus J; Ballanyi K
    Neuroscience; 2000; 96(2):359-71. PubMed ID: 10683576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice.
    Witts EC; Nascimento F; Miles GB
    J Neurophysiol; 2015 Oct; 114(4):2305-15. PubMed ID: 26311185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of phrenic motoneuron excitability by ATP: consequences for respiratory-related output in vitro.
    Miles GB; Parkis MA; Lipski J; Funk GD
    J Appl Physiol (1985); 2002 May; 92(5):1899-910. PubMed ID: 11960940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of rhythmic movements by purinergic neurotransmitters in frog embryos.
    Dale N; Gilday D
    Nature; 1996 Sep; 383(6597):259-63. PubMed ID: 8805702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An adenosine kinase inhibitor, ABT-702, inhibits spinal nociceptive transmission by adenosine release via equilibrative nucleoside transporters in rat.
    Otsuguro K; Tomonari Y; Otsuka S; Yamaguchi S; Kon Y; Ito S
    Neuropharmacology; 2015 Oct; 97():160-70. PubMed ID: 26066576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors.
    Tegnér J; Matsushima T; el Manira A; Grillner S
    J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forelimb locomotor generators and quadrupedal locomotion in the neonatal rat.
    Ballion B; Morin D; Viala D
    Eur J Neurosci; 2001 Nov; 14(10):1727-38. PubMed ID: 11860467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purinergic modulation of glutamate release under ischemic-like conditions in the hippocampus.
    Sperlágh B; Zsilla G; Baranyi M; Illes P; Vizi ES
    Neuroscience; 2007 Oct; 149(1):99-111. PubMed ID: 17850981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fictive locomotor patterns generated by tetraethylammonium application to the neonatal rat spinal cord in vitro.
    Taccola G; Nistri A
    Neuroscience; 2006; 137(2):659-70. PubMed ID: 16289841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of noradrenaline on locomotor rhythm-generating networks in the isolated neonatal rat spinal cord.
    Kiehn O; Sillar KT; Kjaerulff O; McDearmid JR
    J Neurophysiol; 1999 Aug; 82(2):741-6. PubMed ID: 10444672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A₁ adenosine receptor modulation of chemically and electrically evoked lumbar locomotor network activity in isolated newborn rat spinal cords.
    Taccola G; Olivieri D; D'Angelo G; Blackburn P; Secchia L; Ballanyi K
    Neuroscience; 2012 Oct; 222():191-204. PubMed ID: 22824428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of thoracic spinal network activity during locomotor-like activity in the neonatal rat.
    Beliez L; Barrière G; Bertrand SS; Cazalets JR
    J Neurosci; 2015 Apr; 35(15):6117-30. PubMed ID: 25878284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional distribution of the locomotor pattern-generating network in the neonatal rat spinal cord.
    Cowley KC; Schmidt BJ
    J Neurophysiol; 1997 Jan; 77(1):247-59. PubMed ID: 9120567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locomotor pattern in the adult zebrafish spinal cord in vitro.
    Gabriel JP; Mahmood R; Walter AM; Kyriakatos A; Hauptmann G; Calabrese RL; El Manira A
    J Neurophysiol; 2008 Jan; 99(1):37-48. PubMed ID: 17977928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purinergic receptors and their activation by endogenous purines at perisynaptic glial cells of the frog neuromuscular junction.
    Robitaille R
    J Neurosci; 1995 Nov; 15(11):7121-31. PubMed ID: 7472466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric operation of the locomotor central pattern generator in the neonatal mouse spinal cord.
    Endo T; Kiehn O
    J Neurophysiol; 2008 Dec; 100(6):3043-54. PubMed ID: 18829847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.