BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22205743)

  • 1. Evidence for a common evolutionary origin of coronavirus spike protein receptor-binding subunits.
    Li F
    J Virol; 2012 Mar; 86(5):2856-8. PubMed ID: 22205743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substitutions of conserved amino acids in the receptor-binding domain of the spike glycoprotein affect utilization of murine CEACAM1a by the murine coronavirus MHV-A59.
    Thackray LB; Turner BC; Holmes KV
    Virology; 2005 Mar; 334(1):98-110. PubMed ID: 15749126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement in fusion activity of an epitope in the S2 subunit of murine coronavirus spike protein.
    Taguchi F; Shimazaki YK
    Adv Exp Med Biol; 2001; 494():213-8. PubMed ID: 11774471
    [No Abstract]   [Full Text] [Related]  

  • 4. Structure, Function, and Evolution of Coronavirus Spike Proteins.
    Li F
    Annu Rev Virol; 2016 Sep; 3(1):237-261. PubMed ID: 27578435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of a neutralizing-epitope-containing spike protein fragment in turkey coronavirus.
    Chen YN; Wu CC; Lin TL
    Arch Virol; 2011 Sep; 156(9):1525-35. PubMed ID: 21594597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Murine coronavirus evolution in vivo: functional compensation of a detrimental amino acid substitution in the receptor binding domain of the spike glycoprotein.
    Navas-Martin S; Hingley ST; Weiss SR
    J Virol; 2005 Jun; 79(12):7629-40. PubMed ID: 15919915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between the spike protein of human coronavirus NL63 and its cellular receptor ACE2.
    Pöhlmann S; Gramberg T; Wegele A; Pyrc K; van der Hoek L; Berkhout B; Hofmann H
    Adv Exp Med Biol; 2006; 581():281-4. PubMed ID: 17037543
    [No Abstract]   [Full Text] [Related]  

  • 8. Structure of the S1 subunit C-terminal domain from bat-derived coronavirus HKU5 spike protein.
    Han X; Qi J; Song H; Wang Q; Zhang Y; Wu Y; Lu G; Yuen KY; Shi Y; Gao GF
    Virology; 2017 Jul; 507():101-109. PubMed ID: 28432925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors.
    Hofmann H; Simmons G; Rennekamp AJ; Chaipan C; Gramberg T; Heck E; Geier M; Wegele A; Marzi A; Bates P; Pöhlmann S
    J Virol; 2006 Sep; 80(17):8639-52. PubMed ID: 16912312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human coronavirus 229E: receptor binding domain and neutralization by soluble receptor at 37 degrees C.
    Breslin JJ; Mørk I; Smith MK; Vogel LK; Hemmila EM; Bonavia A; Talbot PJ; Sjöström H; Norén O; Holmes KV
    J Virol; 2003 Apr; 77(7):4435-8. PubMed ID: 12634402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular transport of the S proteins of coronaviruses.
    Schwegmann-Wessels C; Ren X; Herrler G
    Adv Exp Med Biol; 2006; 581():271-5. PubMed ID: 17037541
    [No Abstract]   [Full Text] [Related]  

  • 12. Mechanisms of coronavirus cell entry mediated by the viral spike protein.
    Belouzard S; Millet JK; Licitra BN; Whittaker GR
    Viruses; 2012 Jun; 4(6):1011-33. PubMed ID: 22816037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Communication between S1N330 and a region in S2 of murine coronavirus spike protein is important for virus entry into cells expressing CEACAM1b receptor.
    Matsuyama S; Taguchi F
    Virology; 2002 Mar; 295(1):160-71. PubMed ID: 12033774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coronavirus spike proteins in viral entry and pathogenesis.
    Gallagher TM; Buchmeier MJ
    Virology; 2001 Jan; 279(2):371-4. PubMed ID: 11162792
    [No Abstract]   [Full Text] [Related]  

  • 15. Identification of the Receptor-Binding Domain of the Spike Glycoprotein of Human Betacoronavirus HKU1.
    Qian Z; Ou X; Góes LG; Osborne C; Castano A; Holmes KV; Dominguez SR
    J Virol; 2015 Sep; 89(17):8816-27. PubMed ID: 26085157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the receptor-binding site of murine coronavirus spike protein.
    Suzuki H; Taguchi F
    J Virol; 1996 Apr; 70(4):2632-6. PubMed ID: 8642698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a recombinant canine coronavirus with a distinct receptor-binding (S1) domain.
    Regan AD; Millet JK; Tse LP; Chillag Z; Rinaldi VD; Licitra BN; Dubovi EJ; Town CD; Whittaker GR
    Virology; 2012 Sep; 430(2):90-9. PubMed ID: 22609354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of bovine coronavirus spike protein lectin domain.
    Peng G; Xu L; Lin YL; Chen L; Pasquarella JR; Holmes KV; Li F
    J Biol Chem; 2012 Dec; 287(50):41931-8. PubMed ID: 23091051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a receptor-binding domain of the spike glycoprotein of human coronavirus HCoV-229E.
    Bonavia A; Zelus BD; Wentworth DE; Talbot PJ; Holmes KV
    J Virol; 2003 Feb; 77(4):2530-8. PubMed ID: 12551991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier.
    Kuo L; Godeke GJ; Raamsman MJ; Masters PS; Rottier PJ
    J Virol; 2000 Feb; 74(3):1393-406. PubMed ID: 10627550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.