These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 22205858)

  • 21. Diagnosis of bovine tuberculosis using a metal oxide-based electronic nose.
    Cho YS; Jung SC; Oh S
    Lett Appl Microbiol; 2015 Jun; 60(6):513-6. PubMed ID: 25739902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative analysis of volatile organic compounds of breath and urine for distinguishing patients with liver cirrhosis from healthy controls by using electronic nose and voltammetric electronic tongue.
    Zaim O; Diouf A; El Bari N; Lagdali N; Benelbarhdadi I; Ajana FZ; Llobet E; Bouchikhi B
    Anal Chim Acta; 2021 Nov; 1184():339028. PubMed ID: 34625262
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of microbial volatile organic compounds produced by wood-decay fungi.
    Konuma R; Umezawa K; Mizukoshi A; Kawarada K; Yoshida M
    Biotechnol Lett; 2015 Sep; 37(9):1845-52. PubMed ID: 26016679
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-cost electronic-nose (LC-e-nose) systems for the evaluation of plantation and fruit crops: recent advances and future trends.
    Vinicius da Silva Ferreira M; Barbosa JL; Kamruzzaman M; Barbin DF
    Anal Methods; 2023 Nov; 15(45):6120-6138. PubMed ID: 37937362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. E-Tongues/Noses Based on Conducting Polymers and Composite Materials: Expanding the Possibilities in Complex Analytical Sensing.
    Sierra-Padilla A; García-Guzmán JJ; López-Iglesias D; Palacios-Santander JM; Cubillana-Aguilera L
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pattern Recognition and Anomaly Detection by Self-Organizing Maps in a Multi Month E-nose Survey at an Industrial Site.
    Licen S; Di Gilio A; Palmisani J; Petraccone S; de Gennaro G; Barbieri P
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32235302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Meat quality assessment by electronic nose (machine olfaction technology).
    Ghasemi-Varnamkhasti M; Mohtasebi SS; Siadat M; Balasubramanian S
    Sensors (Basel); 2009; 9(8):6058-83. PubMed ID: 22454572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronic Nose Technology in Respiratory Diseases.
    Dragonieri S; Pennazza G; Carratu P; Resta O
    Lung; 2017 Apr; 195(2):157-165. PubMed ID: 28238110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discriminative Detection of Different Cigarette Brands Using a Fast-Response Electronic Nose.
    Sun W; Wu Z; Yang B; Fan S; Hua Z
    ACS Omega; 2023 Dec; 8(48):46034-46042. PubMed ID: 38075792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wood decomposition in aquatic and terrestrial ecosystems in the tropics: contrasting biotic and abiotic processes.
    Jones JM; Heath KD; Ferrer A; Brown SP; Canam T; Dalling JW
    FEMS Microbiol Ecol; 2019 Jan; 95(1):. PubMed ID: 30445583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and Evolution of an Opto-electronic Device for VOCs Detection.
    Pádua AC; Palma S; Gruber J; Gamboa H; Roque AC
    Biomed Eng Syst Technol Int Jt Conf BIOSTEC Revis Sel Pap; 2018; 1():48-55. PubMed ID: 30079403
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The strengths and weaknesses of the electronic nose.
    Harper WJ
    Adv Exp Med Biol; 2001; 488():59-71. PubMed ID: 11548160
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decomposition of spruce wood and release of volatile organic compounds depend on decay type, fungal interactions and enzyme production patterns.
    Mali T; Mäki M; Hellén H; Heinonsalo J; Bäck J; Lundell T
    FEMS Microbiol Ecol; 2019 Sep; 95(9):. PubMed ID: 31494677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cuprous Oxide Based Chemiresistive Electronic Nose for Discrimination of Volatile Organic Compounds.
    Liu B; Wu X; Kam KWL; Cheung WF; Zheng B
    ACS Sens; 2019 Nov; 4(11):3051-3055. PubMed ID: 31591885
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Established methodological issues in electronic nose research: how far are we from using these instruments in clinical settings of breath analysis?
    Bikov A; Lázár Z; Horvath I
    J Breath Res; 2015 Jun; 9(3):034001. PubMed ID: 26056127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Novel Method for Generation of a Fingerprint Using Electronic Nose on the Example of Rapeseed Spoilage.
    Rusinek R; Gancarz M; Krekora M; Nawrocka A
    J Food Sci; 2019 Jan; 84(1):51-58. PubMed ID: 30557906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electronic noses for environmental monitoring applications.
    Capelli L; Sironi S; Del Rosso R
    Sensors (Basel); 2014 Oct; 14(11):19979-20007. PubMed ID: 25347583
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insights into 'fermentonomics': evaluation of volatile organic compounds (VOCs) in human disease using an electronic 'e-nose'.
    Arasaradnam RP; Quraishi N; Kyrou I; Nwokolo CU; Joseph M; Kumar S; Bardhan KD; Covington JA
    J Med Eng Technol; 2011 Feb; 35(2):87-91. PubMed ID: 21204611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reliability of acoustic tomography and ground-penetrating radar for tree decay detection.
    Wu X; Li G; Jiao Z; Wang X
    Appl Plant Sci; 2018 Oct; 6(10):e01187. PubMed ID: 30386713
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.