These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 22205865)

  • 1. A finite element model of a MEMS-based surface acoustic wave hydrogen sensor.
    El Gowini MM; Moussa WA
    Sensors (Basel); 2010; 10(2):1232-50. PubMed ID: 22205865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mercury Sorption and Desorption on Gold: A Comparative Analysis of Surface Acoustic Wave and Quartz Crystal Microbalance-Based Sensors.
    Kabir KM; Sabri YM; Esmaielzadeh Kandjani A; Matthews GI; Field M; Jones LA; Nafady A; Ippolito SJ; Bhargava SK
    Langmuir; 2015 Aug; 31(30):8519-29. PubMed ID: 26169072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Surface Acoustic Wave Devices on Lithium Niobate.
    Mei J; Zhang N; Friend J
    J Vis Exp; 2020 Jun; (160):. PubMed ID: 32628169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic wave based MEMS devices for biosensing applications.
    Voiculescu I; Nordin AN
    Biosens Bioelectron; 2012 Mar; 33(1):1-9. PubMed ID: 22310157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Nanoheight Channels Incorporating Surface Acoustic Wave Actuation via Lithium Niobate for Acoustic Nanofluidics.
    Zhang N; Friend J
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32090998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Three-Dimensional Finite Element Analysis Model of SAW Torque Sensor with Multilayer Structure.
    Li Z; Meng X; Wang B; Zhang C
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Reduced Three Dimensional Model for SAW Sensors Using Finite Element Analysis.
    El Gowini MM; Moussa WA
    Sensors (Basel); 2009; 9(12):9945-64. PubMed ID: 22303156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of Surface Acoustic Wave Propagation Characteristics in New Multilayer Structure: SiO
    Zhang H; Wang H
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Acoustic Wave (SAW) Sensors for Hip Implant: A Numerical and Computational Feasibility Investigation Using Finite Element Methods.
    Hafizh M; Soliman MM; Qiblawey Y; Chowdhury MEH; Islam MT; Musharavati F; Mahmud S; Khandakar A; Nabil M; Nezhad EZ
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.
    Collins DJ; Ma Z; Han J; Ai Y
    Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective detection of elemental mercury vapor using a surface acoustic wave (SAW) sensor.
    Kabir KM; Sabri YM; Matthews GI; Jones LA; Ippolito SJ; Bhargava SK
    Analyst; 2015 Aug; 140(16):5508-17. PubMed ID: 26065560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Acoustic Wave (SAW) Sensors: Physics, Materials, and Applications.
    Mandal D; Banerjee S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple-layer guided surface acoustic wave (SAW)-based pH sensing in longitudinal FiSS-tumoroid cultures.
    Wang T; Green R; Guldiken R; Mohapatra S; Mohapatra S
    Biosens Bioelectron; 2019 Jan; 124-125():244-252. PubMed ID: 30390467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Piezoelectric Microchip for Cell Lysis through Cell-Microparticle Collision within a Microdroplet Driven by Surface Acoustic Wave Oscillation.
    Wang S; Lv X; Su Y; Fan Z; Fang W; Duan J; Zhang S; Ma B; Liu F; Chen H; Geng Z; Liu H
    Small; 2019 Mar; 15(9):e1804593. PubMed ID: 30690881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring Velocity, Attenuation, and Reflection in Surface Acoustic Wave Cavities Through Acoustic Fabry-Pérot Spectra.
    Kelly L; Berini P; Bao X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1542-1548. PubMed ID: 35081023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive wireless MEMS microphones for biomedical applications.
    Sezen AS; Sivaramakrishnan S; Hur S; Rajamani R; Robbins W; Nelson BJ
    J Biomech Eng; 2005 Nov; 127(6):1030-4. PubMed ID: 16438245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the Pd Oxidation State in PdNi Thin Films on Surface Acoustic Wave Hydrogen Sensing Performance.
    Jin J; Cui B; Zhou L; Cheng L; Xue X; Hu A; Liang Y; Wang W
    ACS Sens; 2024 May; 9(5):2395-2401. PubMed ID: 38722860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thin-Film-Based SAW Magnetic Field Sensors.
    Meyer JM; Schell V; Su J; Fichtner S; Yarar E; Niekiel F; Giese T; Kittmann A; Thormählen L; Lebedev V; Moench S; Žukauskaitė A; Quandt E; Lofink F
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Palladium nanoparticle-based surface acoustic wave hydrogen sensor.
    Sil D; Hines J; Udeoyo U; Borguet E
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5709-14. PubMed ID: 25746067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates.
    Chiu CS; Gwo S
    Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.