These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22205935)

  • 1. The glial scar-monocyte interplay: a pivotal resolution phase in spinal cord repair.
    Shechter R; Raposo C; London A; Sagi I; Schwartz M
    PLoS One; 2011; 6(12):e27969. PubMed ID: 22205935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic disorders exacerbate the formation of glial scar after stroke.
    Clain J; Couret D; Bringart M; Lecadieu A; Meilhac O; Lefebvre d'Hellencourt C; Diotel N
    Eur J Neurosci; 2024 Jun; 59(11):3009-3029. PubMed ID: 38576159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NT-3 Combined with TGF-β Signaling Pathway Enhance the Repair of Spinal Cord Injury by Inhibiting Glial Scar Formation and Promoting Axonal Regeneration.
    Chen T; He X; Wang J; Du D; Xu Y
    Mol Biotechnol; 2024 Jun; 66(6):1484-1495. PubMed ID: 37318740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Softening of the chronic hemi-section spinal cord injury scar parallels dysregulation of cellular and extracellular matrix content.
    Baumann HJ; Mahajan G; Ham TR; Betonio P; Kothapalli CR; Shriver LP; Leipzig ND
    J Mech Behav Biomed Mater; 2020 Oct; 110():103953. PubMed ID: 32957245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Safety and Efficacy of Rose Bengal Derivatives for Glial Scar Ablation in Chronic Spinal Cord Injury.
    Patil N; Truong V; Holmberg MH; Lavoie NS; McCoy MR; Dutton JR; Holmberg EG; Parr AM
    J Neurotrauma; 2018 Aug; 35(15):1745-1754. PubMed ID: 29373946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The origin, fate, and contribution of macrophages to spinal cord injury pathology.
    Milich LM; Ryan CB; Lee JK
    Acta Neuropathol; 2019 May; 137(5):785-797. PubMed ID: 30929040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutic application of nicotinamide: As a potential target for inhibiting fibrotic scar formation following spinal cord injury.
    Zhang C; Shao Q; Zhang Y; Liu W; Kang J; Jin Z; Huang N; Ning B
    CNS Neurosci Ther; 2024 Jul; 30(7):e14826. PubMed ID: 38973179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix metalloproteinase signals following neurotrauma are right on cue.
    Trivedi A; Noble-Haeusslein LJ; Levine JM; Santucci AD; Reeves TM; Phillips LL
    Cell Mol Life Sci; 2019 Aug; 76(16):3141-3156. PubMed ID: 31168660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regeneration in Mice of Injured Skin, Heart, and Spinal Cord by α-Gal Nanoparticles Recapitulates Regeneration in Amphibians.
    Galili U; Li J; Schaer GL
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Editorial: Restoring neural circuits after spinal cord injury.
    Muheremu A; Wu J
    Front Mol Neurosci; 2024; 17():1428164. PubMed ID: 38952420
    [No Abstract]   [Full Text] [Related]  

  • 11. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus.
    Shechter R; Miller O; Yovel G; Rosenzweig N; London A; Ruckh J; Kim KW; Klein E; Kalchenko V; Bendel P; Lira SA; Jung S; Schwartz M
    Immunity; 2013 Mar; 38(3):555-69. PubMed ID: 23477737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macrophage activation and its role in repair and pathology after spinal cord injury.
    Gensel JC; Zhang B
    Brain Res; 2015 Sep; 1619():1-11. PubMed ID: 25578260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function of microglia and macrophages in secondary damage after spinal cord injury.
    Zhou X; He X; Ren Y
    Neural Regen Res; 2014 Oct; 9(20):1787-95. PubMed ID: 25422640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Astrocyte scar formation aids central nervous system axon regeneration.
    Anderson MA; Burda JE; Ren Y; Ao Y; O'Shea TM; Kawaguchi R; Coppola G; Khakh BS; Deming TJ; Sofroniew MV
    Nature; 2016 Apr; 532(7598):195-200. PubMed ID: 27027288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal Cord Injury Scarring and Inflammation: Therapies Targeting Glial and Inflammatory Responses.
    Orr MB; Gensel JC
    Neurotherapeutics; 2018 Jul; 15(3):541-553. PubMed ID: 29717413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroimmunology of traumatic spinal cord injury: a brief history and overview.
    Popovich PG
    Exp Neurol; 2014 Aug; 258():1-4. PubMed ID: 24814714
    [No Abstract]   [Full Text] [Related]  

  • 17. The Biology of Regeneration Failure and Success After Spinal Cord Injury.
    Tran AP; Warren PM; Silver J
    Physiol Rev; 2018 Apr; 98(2):881-917. PubMed ID: 29513146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibronectin Matrix Assembly after Spinal Cord Injury.
    Zhu Y; Soderblom C; Trojanowsky M; Lee DH; Lee JK
    J Neurotrauma; 2015 Aug; 32(15):1158-67. PubMed ID: 25492623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesenchymal Stem Cells Combined With Electroacupuncture Treatment Regulate the Subpopulation of Macrophages and Astrocytes to Facilitate Axonal Regeneration in Transected Spinal Cord.
    Zhang R; Wang J; Deng Q; Xiao X; Zeng X; Lai B; Li G; Ma Y; Ruan J; Han I; Zeng YS; Ding Y
    Neurospine; 2023 Dec; 20(4):1358-1379. PubMed ID: 38171303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome Profiling after Early Spinal Cord Injury in the Axolotl and Its Comparison with Rodent Animal Models through RNA-Seq Data Analysis.
    González-Orozco JC; Escobedo-Avila I; Velasco I
    Genes (Basel); 2023 Dec; 14(12):. PubMed ID: 38137011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.