BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 22206418)

  • 1. Do capsular pressure and implant motion interact to cause high pressure in the periprosthetic bone in total hip replacement?
    Alidousti H; Taylor M; Bressloff NW
    J Biomech Eng; 2011 Dec; 133(12):121001. PubMed ID: 22206418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periprosthetic wear particle migration and distribution modelling and the implication for osteolysis in cementless total hip replacement.
    Alidousti H; Taylor M; Bressloff NW
    J Mech Behav Biomed Mater; 2014 Apr; 32():225-244. PubMed ID: 24495400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The implication of the osteolysis threshold and interfacial gaps on periprosthetic osteolysis in cementless total hip replacement.
    Alidousti H; Bressloff NW
    J Biomech; 2017 Jun; 58():1-10. PubMed ID: 28511839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Immunohistochemical analysis of periprosthetic osteolysis in aseptic loosening of hip arthroplasty].
    Gravius S; Mumme T; Delank KS; Eckardt A; Maus U; Andereya S; Hansen T
    Z Orthop Unfall; 2007; 145(2):169-75. PubMed ID: 17492556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid pressure causes bone resorption in a rabbit model of prosthetic loosening.
    Van der Vis HM; Aspenberg P; Marti RK; Tigchelaar W; Van Noorden CJ
    Clin Orthop Relat Res; 1998 May; (350):201-8. PubMed ID: 9602821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micromotion-induced peri-prosthetic fluid flow around a cementless femoral stem.
    Malfroy Camine V; Terrier A; Pioletti DP
    Comput Methods Biomech Biomed Engin; 2017 May; 20(7):730-736. PubMed ID: 28271719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conus hip prosthesis.
    Wagner H; Wagner M
    Acta Chir Orthop Traumatol Cech; 2001; 68(4):213-21. PubMed ID: 11706545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-turnover periprosthetic bone remodeling and immature bone formation around loose cemented total hip joints.
    Takagi M; Santavirta S; Ida H; Ishii M; Takei I; Niissalo S; Ogino T; Konttinen YT
    J Bone Miner Res; 2001 Jan; 16(1):79-88. PubMed ID: 11149493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure-induced periprosthetic osteolysis: a rat model.
    Skripitz R; Aspenberg P
    J Orthop Res; 2000 May; 18(3):481-4. PubMed ID: 10937637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The effect of ultra high molecular weight polyethylene particle on the tissues of joint prosthesis].
    Lu W; Liao W; Yu N; Luo X; Bai B; Lin Z; Gu Y; Liu M; Chen G; Yang T
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Jan; 19(1):54-7. PubMed ID: 15704845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient computational method for assessing the effects of implant positioning in cementless total hip replacements.
    Bah MT; Nair PB; Taylor M; Browne M
    J Biomech; 2011 Apr; 44(7):1417-22. PubMed ID: 21295306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses.
    Engh CA; O'Connor D; Jasty M; McGovern TF; Bobyn JD; Harris WH
    Clin Orthop Relat Res; 1992 Dec; (285):13-29. PubMed ID: 1446429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Migration, particles, and fluid pressure. A discussion of causes of prosthetic loosening.
    Aspenberg P; Van der Vis H
    Clin Orthop Relat Res; 1998 Jul; (352):75-80. PubMed ID: 9678035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro assessments of reverse glenoid stability using displacement gages are misleading - recommendations for accurate measurements of interface micromotion.
    Favre P; Perala S; Vogel P; Fucentese SF; Goff JR; Gerber C; Snedeker JG
    Clin Biomech (Bristol, Avon); 2011 Nov; 26(9):917-22. PubMed ID: 21658824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution magnetic resonance flow imaging in a model of porous bone-implant interface.
    Conroy MJ; Pédrono A; Bechtold JE; Søballe K; Ambard D; Swider P
    Magn Reson Imaging; 2006 Jun; 24(5):657-61. PubMed ID: 16735190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repair of periprosthetic pelvis defects with porous metal implants: a finite element study.
    Levine DL; Dharia MA; Siggelkow E; Crowninshield RD; Degroff DA; Wentz DH
    J Biomech Eng; 2010 Feb; 132(2):021006. PubMed ID: 20370243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical analysis of interfacial gap in a cementless stem FE model.
    Park Y; Choi D; Hwang DS; Yoon YS
    J Biomech Eng; 2009 Feb; 131(2):021016. PubMed ID: 19102575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential role of human osteoblasts for periprosthetic osteolysis following exposure to wear particles.
    Lochner K; Fritsche A; Jonitz A; Hansmann D; Mueller P; Mueller-Hilke B; Bader R
    Int J Mol Med; 2011 Dec; 28(6):1055-63. PubMed ID: 21850366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteolysis: medical and surgical approaches.
    Saleh KJ; Thongtrangan I; Schwarz EM
    Clin Orthop Relat Res; 2004 Oct; (427):138-47. PubMed ID: 15552150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.