These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

617 related articles for article (PubMed ID: 22206422)

  • 1. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.
    Saito M; Ikenaga Y; Matsukawa M; Watanabe Y; Asada T; Lagrée PY
    J Biomech Eng; 2011 Dec; 133(12):121005. PubMed ID: 22206422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements.
    Matthys KS; Alastruey J; Peiró J; Khir AW; Segers P; Verdonck PR; Parker KH; Sherwin SJ
    J Biomech; 2007; 40(15):3476-86. PubMed ID: 17640653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness.
    Ikenaga Y; Nishi S; Komagata Y; Saito M; Lagrée PY; Asada T; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2381-8. PubMed ID: 24158293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels.
    Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN
    J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wave propagation in a model of the arterial circulation.
    Wang JJ; Parker KH
    J Biomech; 2004 Apr; 37(4):457-70. PubMed ID: 14996557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave dissipation in flexible tubes in the time domain: in vitro model of arterial waves.
    Feng J; Long Q; Khir AW
    J Biomech; 2007; 40(10):2130-8. PubMed ID: 17166499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of 1D blood flow models of the human arterial network to differential pressure predictions.
    Johnson DA; Rose WC; Edwards JW; Naik UP; Beris AN
    J Biomech; 2011 Mar; 44(5):869-76. PubMed ID: 21236432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave propagation through a viscous fluid-filled elastic tube under initial pressure: theoretical and biophysical model.
    Žikić D; Žikić K
    Eur Biophys J; 2022 Jul; 51(4-5):365-374. PubMed ID: 35618857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the surrounding tissue in the propagation of waves through the arterial system.
    Dinnar U
    TIT J Life Sci; 1975; 5(3-4):49-56. PubMed ID: 1231056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulse wave velocity as a diagnostic index: the pitfalls of tethering versus stiffening of the arterial wall.
    Hodis S; Zamir M
    J Biomech; 2011 Apr; 44(7):1367-73. PubMed ID: 21334629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Regional differences in viscosity, elasticity and wall buffering function in systemic arteries: pulse wave analysis of the arterial pressure-diameter relationship].
    Bia D; Aguirre I; Zócalo Y; Devera L; Cabrera Fischer E; Armentano R
    Rev Esp Cardiol; 2005 Feb; 58(2):167-74. PubMed ID: 15743563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical analysis of pressure pulse propagation in arterial vessels.
    Belardinelli E; Cavalcanti S
    J Biomech; 1992 Nov; 25(11):1337-49. PubMed ID: 1400535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High frequency pressure propagation in viscoelastic tubes: a new experimental approach.
    Ursino M; Artioli E
    Biomed Mater Eng; 1992; 2(1):19-31. PubMed ID: 1458201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of wave speed and wave separation in the arteries using diameter and velocity.
    Feng J; Khir AW
    J Biomech; 2010 Feb; 43(3):455-62. PubMed ID: 19892359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multiscale approach for modelling wave propagation in an arterial segment.
    Pontrelli G
    Comput Methods Biomech Biomed Engin; 2004 Apr; 7(2):79-89. PubMed ID: 15203956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart.
    Formaggia L; Lamponi D; Tuveri M; Veneziani A
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):273-88. PubMed ID: 17132614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical and computational investigations of nonlinear wave propagations in arteries. (I)--A theoretical model of nonlinear pulse wave propagations.
    Wu SG; Lee GC
    Sci China B; 1989 Jun; 32(6):711-28. PubMed ID: 2775461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The compression and expansion waves of the forward and backward flows: an in-vitro arterial model.
    Feng J; Khir AW
    Proc Inst Mech Eng H; 2008 May; 222(4):531-42. PubMed ID: 18595362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A mathematical model of hemodynamic processes for distal pulse wave formation].
    Fedotov AA
    Biofizika; 2015; 60(2):343-7. PubMed ID: 26016031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.