These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 22206428)
41. An insight into the mechanistic role of the common carotid artery on the hemodynamics at the carotid bifurcation. Gallo D; Steinman DA; Morbiducci U Ann Biomed Eng; 2015 Jan; 43(1):68-81. PubMed ID: 25234131 [TBL] [Abstract][Full Text] [Related]
42. Measurement of hemodynamics in human carotid artery using ultrasound and computational fluid dynamics. Starmans-Kool MJ; Stanton AV; Zhao S; Xu XY; Thom SA; Hughes AD J Appl Physiol (1985); 2002 Mar; 92(3):957-61. PubMed ID: 11842026 [TBL] [Abstract][Full Text] [Related]
43. [Tackling hemodynamic analysis of the carotid artery using open-source software and computational fluid dynamics]. Saho T; Onishi H; Sugihara T; Nakamura Y; Yuda I Nihon Hoshasen Gijutsu Gakkai Zasshi; 2013 Nov; 69(11):1241-9. PubMed ID: 24256647 [TBL] [Abstract][Full Text] [Related]
44. On the nature and reduction of plaque-mimicking flow artifacts in black blood MRI of the carotid bifurcation. Steinman DA; Rutt BK Magn Reson Med; 1998 Apr; 39(4):635-41. PubMed ID: 9543426 [TBL] [Abstract][Full Text] [Related]
45. Effect of asymmetry on the flow behavior in an idealized arterial bifurcation. Nagargoje M; Gupta R Comput Methods Biomech Biomed Engin; 2020 May; 23(6):232-247. PubMed ID: 31931612 [TBL] [Abstract][Full Text] [Related]
46. Computational fluid dynamics study of intra-arterial chemotherapy for oral cancer. Kitajima H; Oshima M; Iwai T; Ohhara Y; Yajima Y; Mitsudo K; Tohnai I Biomed Eng Online; 2017 May; 16(1):57. PubMed ID: 28506222 [TBL] [Abstract][Full Text] [Related]
47. Improving Blood Flow Visualization of Recirculation Regions at Carotid Bulb in 4D Flow MRI Using Semi-Automatic Segmentation with ITK-SNAP. Ngo MT; Lee UY; Ha H; Jung J; Lee DH; Kwak HS Diagnostics (Basel); 2021 Oct; 11(10):. PubMed ID: 34679588 [TBL] [Abstract][Full Text] [Related]
48. Four-Dimensional Flow Magnetic Resonance Imaging for Assessment of Velocity Magnitudes and Flow Patterns in The Human Carotid Artery Bifurcation: Comparison with Computational Fluid Dynamics. Ngo MT; Kim CI; Jung J; Chung GH; Lee DH; Kwak HS Diagnostics (Basel); 2019 Dec; 9(4):. PubMed ID: 31847224 [TBL] [Abstract][Full Text] [Related]
49. Carotid Bifurcation With Tandem Stenosis-A Patient-Specific Case Study Combined Wang J; Paritala PK; Mendieta JB; Gu Y; Raffel OC; McGahan T; Lloyd T; Li Z Front Bioeng Biotechnol; 2019; 7():349. PubMed ID: 31824937 [TBL] [Abstract][Full Text] [Related]
50. Impact of head rotation on the individualized common carotid flow and carotid bifurcation hemodynamics. Aristokleous N; Seimenis I; Georgiou GC; Papaharilaou Y; Brott BC; Nicolaides A; Anayiotos AS IEEE J Biomed Health Inform; 2014 May; 18(3):783-9. PubMed ID: 24808222 [TBL] [Abstract][Full Text] [Related]
51. On assessing the quality of particle tracking through computational fluid dynamic models. Tambasco M; Steinman DA J Biomech Eng; 2002 Apr; 124(2):166-75. PubMed ID: 12002125 [TBL] [Abstract][Full Text] [Related]
52. Hemodynamics of the hepatic venous three-vessel confluences using particle image velocimetry. Lara M; Chen CY; Mannor P; Dur O; Menon PG; Yoganathan AP; Pekkan K Ann Biomed Eng; 2011 Sep; 39(9):2398-416. PubMed ID: 21607758 [TBL] [Abstract][Full Text] [Related]
53. Computational Assessment of Unsteady Flow Effects on Magnetic Nanoparticle Targeting Efficiency in a Magnetic Stented Carotid Bifurcation Artery. Hewlin RL; Smith M; Kizito JP Cardiovasc Eng Technol; 2023 Oct; 14(5):694-712. PubMed ID: 37723333 [TBL] [Abstract][Full Text] [Related]
54. Development of a Two-Way Coupled Eulerian-Lagrangian Computational Magnetic Nanoparticle Targeting Model for Pulsatile Flow in a Patient-Specific Diseased Left Carotid Bifurcation Artery. Hewlin RL; Ciero A; Kizito JP Cardiovasc Eng Technol; 2019 Jun; 10(2):299-313. PubMed ID: 30927212 [TBL] [Abstract][Full Text] [Related]
55. Improved prediction of disturbed flow via hemodynamically-inspired geometric variables. Bijari PB; Antiga L; Gallo D; Wasserman BA; Steinman DA J Biomech; 2012 Jun; 45(9):1632-7. PubMed ID: 22552156 [TBL] [Abstract][Full Text] [Related]
56. Blood flow simulations in patient-specific geometries of the carotid artery: A systematic review. Lopes D; Puga H; Teixeira J; Lima R J Biomech; 2020 Oct; 111():110019. PubMed ID: 32905972 [TBL] [Abstract][Full Text] [Related]
57. Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Lee SW; Antiga L; Spence JD; Steinman DA Stroke; 2008 Aug; 39(8):2341-7. PubMed ID: 18556585 [TBL] [Abstract][Full Text] [Related]
58. Computational evaluation of smoothed particle hydrodynamics for implementing blood flow modelling through CT reconstructed arteries. Qin Y; Wu J; Hu Q; Ghista DN; Wong KK J Xray Sci Technol; 2017; 25(2):213-232. PubMed ID: 28234274 [TBL] [Abstract][Full Text] [Related]
59. Transitional flow analysis in the carotid artery bifurcation by proper orthogonal decomposition and particle image velocimetry. Kefayati S; Poepping TL Med Eng Phys; 2013 Jul; 35(7):898-909. PubMed ID: 23025907 [TBL] [Abstract][Full Text] [Related]
60. Construction of a physical model of the human carotid artery based upon in vivo magnetic resonance images. Yedavalli RV; Loth F; Yardimci A; Pritchard WF; Oshinski JN; Sadler L; Charbel F; Alperin N J Biomech Eng; 2001 Aug; 123(4):372-6. PubMed ID: 11563764 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]