These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 22206906)
1. Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: an EEG study. Kober SE; Kurzmann J; Neuper C Int J Psychophysiol; 2012 Mar; 83(3):365-74. PubMed ID: 22206906 [TBL] [Abstract][Full Text] [Related]
2. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study. Basso Moro S; Bisconti S; Muthalib M; Spezialetti M; Cutini S; Ferrari M; Placidi G; Quaresima V Neuroimage; 2014 Jan; 85 Pt 1():451-60. PubMed ID: 23684867 [TBL] [Abstract][Full Text] [Related]
3. Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study. Slobounov SM; Ray W; Johnson B; Slobounov E; Newell KM Int J Psychophysiol; 2015 Mar; 95(3):254-60. PubMed ID: 25448267 [TBL] [Abstract][Full Text] [Related]
4. Brain oscillatory activity during spatial navigation: theta and gamma activity link medial temporal and parietal regions. White DJ; Congedo M; Ciorciari J; Silberstein RB J Cogn Neurosci; 2012 Mar; 24(3):686-97. PubMed ID: 21812639 [TBL] [Abstract][Full Text] [Related]
5. Neural correlate of spatial presence in an arousing and noninteractive virtual reality: an EEG and psychophysiology study. Baumgartner T; Valko L; Esslen M; Jäncke L Cyberpsychol Behav; 2006 Feb; 9(1):30-45. PubMed ID: 16497116 [TBL] [Abstract][Full Text] [Related]
6. Interactive and passive virtual reality distraction: effects on presence and pain intensity. Gutierrez-Maldonado J; Gutierrez-Martinez O; Cabas-Hoyos K Stud Health Technol Inform; 2011; 167():69-73. PubMed ID: 21685644 [TBL] [Abstract][Full Text] [Related]
7. Alpha coherence predicts accuracy during a visuomotor tracking task. Rilk AJ; Soekadar SR; Sauseng P; Plewnia C Neuropsychologia; 2011 Nov; 49(13):3704-9. PubMed ID: 21964200 [TBL] [Abstract][Full Text] [Related]
8. Building virtual reality fMRI paradigms: a framework for presenting immersive virtual environments. Mueller C; Luehrs M; Baecke S; Adolf D; Luetzkendorf R; Luchtmann M; Bernarding J J Neurosci Methods; 2012 Aug; 209(2):290-8. PubMed ID: 22759716 [TBL] [Abstract][Full Text] [Related]
9. Control over the virtual environment influences the presence and efficacy of a virtual reality intervention on pain. Gutiérrez-Martínez O; Gutiérrez-Maldonado J; Loreto-Quijada D Stud Health Technol Inform; 2011; 167():111-5. PubMed ID: 21685651 [TBL] [Abstract][Full Text] [Related]
10. A strong parietal hub in the small-world network of coloured-hearing synaesthetes during resting state EEG. Jäncke L; Langer N J Neuropsychol; 2011 Sep; 5(2):178-202. PubMed ID: 21923785 [TBL] [Abstract][Full Text] [Related]
11. Sex differences in human EEG theta oscillations during spatial navigation in virtual reality. Kober SE; Neuper C Int J Psychophysiol; 2011 Mar; 79(3):347-55. PubMed ID: 21146566 [TBL] [Abstract][Full Text] [Related]
12. Egocentric memory impaired and allocentric memory intact as assessed by virtual reality in subjects with unilateral parietal cortex lesions. Weniger G; Ruhleder M; Wolf S; Lange C; Irle E Neuropsychologia; 2009 Jan; 47(1):59-69. PubMed ID: 18789955 [TBL] [Abstract][Full Text] [Related]
13. Encoding of visual-spatial information in working memory requires more cerebral efforts than retrieval: Evidence from an EEG and virtual reality study. Jaiswal N; Ray W; Slobounov S Brain Res; 2010 Aug; 1347():80-9. PubMed ID: 20570660 [TBL] [Abstract][Full Text] [Related]
14. Topographic mapping of the spectral components of the cyclic alternating pattern (CAP). Ferri R; Bruni O; Miano S; Terzano MG Sleep Med; 2005 Jan; 6(1):29-36. PubMed ID: 15680292 [TBL] [Abstract][Full Text] [Related]
15. EEG correlates of spatial orientation in the human retrosplenial complex. Lin CT; Chiu TC; Gramann K Neuroimage; 2015 Oct; 120():123-32. PubMed ID: 26163801 [TBL] [Abstract][Full Text] [Related]
17. [Context-dependent EEG spectral characteristics during performance of tasks]. Kurova NS; Cheremushkin EA Zh Vyssh Nerv Deiat Im I P Pavlova; 2006; 56(2):211-8. PubMed ID: 16756128 [TBL] [Abstract][Full Text] [Related]
18. Estimation of the cortical functional connectivity by directed transfer function during mental fatigue. Liu JP; Zhang C; Zheng CX Appl Ergon; 2010 Dec; 42(1):114-21. PubMed ID: 20576255 [TBL] [Abstract][Full Text] [Related]
19. A functional magnetic resonance imaging (FMRI) study of cue-induced smoking craving in virtual environments. Lee JH; Lim Y; Wiederhold BK; Graham SJ Appl Psychophysiol Biofeedback; 2005 Sep; 30(3):195-204. PubMed ID: 16167185 [TBL] [Abstract][Full Text] [Related]
20. Estimation of the effective and functional human cortical connectivity with structural equation modeling and directed transfer function applied to high-resolution EEG. Astolfi L; Cincotti F; Mattia D; Salinari S; Babiloni C; Basilisco A; Rossini PM; Ding L; Ni Y; He B; Marciani MG; Babiloni F Magn Reson Imaging; 2004 Dec; 22(10):1457-70. PubMed ID: 15707795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]