These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22206969)

  • 1. Hydrodynamic and interparticle potential effects on aggregation of colloidal particles.
    Cao XJ; Cummins HZ; Morris JF
    J Colloid Interface Sci; 2012 Feb; 368(1):86-96. PubMed ID: 22206969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yield Stress of Concentrated Zirconia Suspensions: Correlation with Particle Interactions.
    Megías-Alguacil D; Durán JD; Delgado AV
    J Colloid Interface Sci; 2000 Nov; 231(1):74-83. PubMed ID: 11082250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interparticle interactions in concentrated suspensions and their bulk (rheological) properties.
    Tadros T
    Adv Colloid Interface Sci; 2011 Oct; 168(1-2):263-77. PubMed ID: 21632031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and modeling study of breakage and restructuring of open and dense colloidal aggregates.
    Harshe YM; Lattuada M; Soos M
    Langmuir; 2011 May; 27(10):5739-52. PubMed ID: 21506535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brownian dynamics simulation of the crystallization dynamics of charged colloidal particles.
    Gu L; Xu S; Sun Z; Wang JT
    J Colloid Interface Sci; 2010 Oct; 350(2):409-16. PubMed ID: 20673671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breakage rate of colloidal aggregates in shear flow through stokesian dynamics.
    Harshe YM; Lattuada M
    Langmuir; 2012 Jan; 28(1):283-92. PubMed ID: 22122803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local Structure Evolution in Particle Network Formation Studied by Brownian Dynamics Simulation.
    Hütter M
    J Colloid Interface Sci; 2000 Nov; 231(2):337-350. PubMed ID: 11049684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic fragmentation of nanoparticle aggregates at orthokinetic coagulation.
    Dukhin S; Zhu C; Dave RN; Yu Q
    Adv Colloid Interface Sci; 2005 Jun; 114-115():119-31. PubMed ID: 15936286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interparticle interactions in concentrate water-oil emulsions.
    Mishchuk NA; Sanfeld A; Steinchen A
    Adv Colloid Interface Sci; 2004 Dec; 112(1-3):129-57. PubMed ID: 15581558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-particle friction in a mesoscopic solvent.
    Lee SH; Kapral R
    J Chem Phys; 2005 Jun; 122(21):214916. PubMed ID: 15974799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small-angle neutron scattering study of concentrated colloidal dispersions: the interparticle interactions between sterically stabilized particles.
    Qiu D; Dreiss CA; Cosgrove T; Howe AM
    Langmuir; 2005 Oct; 21(22):9964-9. PubMed ID: 16229515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation in colloidal suspensions: evaluation of the role of hydrodynamic interactions by means of numerical simulations.
    Tomilov A; Videcoq A; Cerbelaud M; Piechowiak MA; Chartier T; Ala-Nissila T; Bochicchio D; Ferrando R
    J Phys Chem B; 2013 Nov; 117(46):14509-17. PubMed ID: 24143912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic interactions in colloidal ferrofluids: a lattice Boltzmann study.
    Kim E; Stratford K; Camp PJ; Cates ME
    J Phys Chem B; 2009 Mar; 113(12):3681-93. PubMed ID: 19014186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The permeability of synthetic fractal aggregates with realistic three-dimensional structure.
    Kim AS; Stolzenbach KD
    J Colloid Interface Sci; 2002 Sep; 253(2):315-28. PubMed ID: 16290864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(ethylene glycol)-conjugated phospholipids in aqueous micellar solutions: hydration, static structure, and interparticle interactions.
    Sato T; Sakai H; Sou K; Buchner R; Tsuchida E
    J Phys Chem B; 2007 Feb; 111(6):1393-401. PubMed ID: 17286354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong magnetic field effects on solid-liquid and particle-particle interactions during the processing of a conducting liquid containing non-conducting particles.
    Sun ZH; Zhang X; Guo M; Pandelaers L; Vleugels J; Van der Biest O; Van Reusel K; Blanpain B
    J Colloid Interface Sci; 2012 Jun; 375(1):203-12. PubMed ID: 22443967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of nonionic surfactant on silica nanoparticles: structure and resultant interparticle interactions.
    Sharma KP; Aswal VK; Kumaraswamy G
    J Phys Chem B; 2010 Sep; 114(34):10986-94. PubMed ID: 20687569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-dimensional cluster growth and branching gels in colloidal systems with short-range depletion attraction and screened electrostatic repulsion.
    Sciortino F; Tartaglia P; Zaccarelli E
    J Phys Chem B; 2005 Nov; 109(46):21942-53. PubMed ID: 16853852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction and measurement of the interparticle depletion interaction next to a flat wall.
    Piech M; Weronski P; Wu X; Walz JY
    J Colloid Interface Sci; 2002 Mar; 247(2):327-41. PubMed ID: 16290472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.