BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22206988)

  • 1. Molecular basis of the functional divergence of fatty acyl-AMP ligase biosynthetic enzymes of Mycobacterium tuberculosis.
    Goyal A; Verma P; Anandhakrishnan M; Gokhale RS; Sankaranarayanan R
    J Mol Biol; 2012 Feb; 416(2):221-38. PubMed ID: 22206988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatty acyl-AMP ligases and polyketide synthases are unique enzymes of lipid biosynthetic machinery in Mycobacterium tuberculosis.
    Mohanty D; Sankaranarayanan R; Gokhale RS
    Tuberculosis (Edinb); 2011 Sep; 91(5):448-55. PubMed ID: 21601529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis.
    Arora P; Goyal A; Natarajan VT; Rajakumara E; Verma P; Gupta R; Yousuf M; Trivedi OA; Mohanty D; Tyagi A; Sankaranarayanan R; Gokhale RS
    Nat Chem Biol; 2009 Mar; 5(3):166-73. PubMed ID: 19182784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria.
    Trivedi OA; Arora P; Sridharan V; Tickoo R; Mohanty D; Gokhale RS
    Nature; 2004 Mar; 428(6981):441-5. PubMed ID: 15042094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dual function of the Mycobacterium tuberculosis FadD32 required for mycolic acid biosynthesis.
    Léger M; Gavalda S; Guillet V; van der Rest B; Slama N; Montrozier H; Mourey L; Quémard A; Daffé M; Marrakchi H
    Chem Biol; 2009 May; 16(5):510-9. PubMed ID: 19477415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional studies of fatty acyl adenylate ligases from E. coli and L. pneumophila.
    Zhang Z; Zhou R; Sauder JM; Tonge PJ; Burley SK; Swaminathan S
    J Mol Biol; 2011 Feb; 406(2):313-24. PubMed ID: 21185305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural diversity in the six-fold redundant set of acyl-CoA carboxyltransferases in Mycobacterium tuberculosis.
    Holton SJ; King-Scott S; Nasser Eddine A; Kaufmann SH; Wilmanns M
    FEBS Lett; 2006 Dec; 580(30):6898-902. PubMed ID: 17157300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of small-molecule inhibitors of fatty acyl-AMP and fatty acyl-CoA ligases in Mycobacterium tuberculosis.
    Baran M; Grimes KD; Sibbald PA; Fu P; Boshoff HIM; Wilson DJ; Aldrich CC
    Eur J Med Chem; 2020 Sep; 201():112408. PubMed ID: 32574901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A universal pocket in fatty acyl-AMP ligases ensures redirection of fatty acid pool away from coenzyme A-based activation.
    Patil GS; Kinatukara P; Mondal S; Shambhavi S; Patel KD; Pramanik S; Dubey N; Narasimhan S; Madduri MK; Pal B; Gokhale RS; Sankaranarayanan R
    Elife; 2021 Sep; 10():. PubMed ID: 34490847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of a substrate complex of Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III (FabH) with lauroyl-coenzyme A.
    Musayev F; Sachdeva S; Scarsdale JN; Reynolds KA; Wright HT
    J Mol Biol; 2005 Mar; 346(5):1313-21. PubMed ID: 15713483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promiscuous fatty acyl CoA ligases produce acyl-CoA and acyl-SNAC precursors for polyketide biosynthesis.
    Arora P; Vats A; Saxena P; Mohanty D; Gokhale RS
    J Am Chem Soc; 2005 Jul; 127(26):9388-9. PubMed ID: 15984864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of Mycobacterium tuberculosis FadD10 protein reveal a new type of adenylate-forming enzyme.
    Liu Z; Ioerger TR; Wang F; Sacchettini JC
    J Biol Chem; 2013 Jun; 288(25):18473-83. PubMed ID: 23625916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Mycobacterium tuberculosis very-long-chain fatty acyl-CoA synthetase: structural basis for housing lipid substrates longer than the enzyme.
    Andersson CS; Lundgren CA; Magnúsdóttir A; Ge C; Wieslander A; Martinez Molina D; Högbom M
    Structure; 2012 Jun; 20(6):1062-70. PubMed ID: 22560731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural snapshots for the conformation-dependent catalysis by human medium-chain acyl-coenzyme A synthetase ACSM2A.
    Kochan G; Pilka ES; von Delft F; Oppermann U; Yue WW
    J Mol Biol; 2009 May; 388(5):997-1008. PubMed ID: 19345228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and expression of an acyl-CoA dehydrogenase from Mycobacterium tuberculosis.
    Mahadevan U; Padmanaban G
    Biochem Biophys Res Commun; 1998 Mar; 244(3):893-7. PubMed ID: 9535763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting the role of critical residues and substrate preference of a Fatty Acyl-CoA Synthetase (FadD13) of Mycobacterium tuberculosis.
    Khare G; Gupta V; Gupta RK; Gupta R; Bhat R; Tyagi AK
    PLoS One; 2009 Dec; 4(12):e8387. PubMed ID: 20027301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic understanding of bacterial FAALs and the role of their homologs in eukaryotes.
    Mondal S; Pal B; Sankaranarayanan R
    Proteins; 2023 Aug; ():. PubMed ID: 37615273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The X-ray structure of Escherichia coli enoyl reductase with bound NAD+ at 2.1 A resolution.
    Baldock C; Rafferty JB; Stuitje AR; Slabas AR; Rice DW
    J Mol Biol; 1998 Dec; 284(5):1529-46. PubMed ID: 9878369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of human isovaleryl-CoA dehydrogenase at 2.6 A resolution: structural basis for substrate specificity,
    Tiffany KA; Roberts DL; Wang M; Paschke R; Mohsen AW; Vockley J; Kim JJ
    Biochemistry; 1997 Jul; 36(28):8455-64. PubMed ID: 9214289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cloning and expression of Pfacs1, a Plasmodium falciparum fatty acyl coenzyme A synthetase-1 targeted to the host erythrocyte cytoplasm.
    Matesanz F; Durán-Chica I; Alcina A
    J Mol Biol; 1999 Aug; 291(1):59-70. PubMed ID: 10438606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.