These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 22207035)
1. A further study on chromosome minimization by protoplast fusion in Aspergillus oryzae. Hara S; Jin FJ; Takahashi T; Koyama Y Mol Genet Genomics; 2012 Feb; 287(2):177-87. PubMed ID: 22207035 [TBL] [Abstract][Full Text] [Related]
2. A trial of minimization of chromosome 7 in Aspergillus oryzae by multiple chromosomal deletions. Jin FJ; Takahashi T; Utsushikawa M; Furukido T; Nishida M; Ogawa M; Tokuoka M; Koyama Y Mol Genet Genomics; 2010 Jan; 283(1):1-12. PubMed ID: 19855999 [TBL] [Abstract][Full Text] [Related]
3. Molecular characterization of intergeneric hybrid between Aspergillus oryzae and Trichoderma harzianum by protoplast fusion. Patil NS; Patil SM; Govindwar SP; Jadhav JP J Appl Microbiol; 2015 Feb; 118(2):390-8. PubMed ID: 25444252 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the functions of recombination-related genes in the generation of large chromosomal deletions by loop-out recombination in Aspergillus oryzae. Takahashi T; Ogawa M; Koyama Y Eukaryot Cell; 2012 Apr; 11(4):507-17. PubMed ID: 22286092 [TBL] [Abstract][Full Text] [Related]
5. Identification of a basic helix-loop-helix-type transcription regulator gene in Aspergillus oryzae by systematically deleting large chromosomal segments. Jin FJ; Takahashi T; Machida M; Koyama Y Appl Environ Microbiol; 2009 Sep; 75(18):5943-51. PubMed ID: 19633118 [TBL] [Abstract][Full Text] [Related]
6. Discovery and analysis of an active long terminal repeat-retrotransposable element in Aspergillus oryzae. Jie Jin F; Hara S; Sato A; Koyama Y J Gen Appl Microbiol; 2014; 60(1):1-6. PubMed ID: 24646755 [TBL] [Abstract][Full Text] [Related]
7. Enhanced production of fructosyltransferase in Aspergillus oryzae by genome shuffling. Wang S; Duan M; Liu Y; Fan S; Lin X; Zhang Y Biotechnol Lett; 2017 Mar; 39(3):391-396. PubMed ID: 27853895 [TBL] [Abstract][Full Text] [Related]
8. Improved stress resistance and ethanol production by segmental haploidization of the diploid genome in Saccharomyces cerevisiae. Kaboli S; Miyamoto T; Sunada K; Sasano Y; Sugiyama M; Harashima S J Biosci Bioeng; 2016 Jun; 121(6):638-644. PubMed ID: 26690924 [TBL] [Abstract][Full Text] [Related]
9. Electrophoretic karyotype and gene assignment to chromosomes of Aspergillus oryzae. Kitamoto K; Kimura K; Gomi K; Kumagai C Biosci Biotechnol Biochem; 1994 Aug; 58(8):1467-70. PubMed ID: 7765278 [TBL] [Abstract][Full Text] [Related]
10. Targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. Takahashi T; Sato A; Ogawa M; Hanya Y; Oguma T Appl Environ Microbiol; 2014 Aug; 80(15):4547-58. PubMed ID: 24837372 [TBL] [Abstract][Full Text] [Related]
11. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227 [TBL] [Abstract][Full Text] [Related]
12. Telomere-mediated chromosomal truncation in Aspergillus oryzae. Tada S; Ohkuchi H; Matsushita-Morita M; Furukawa I; Hattori R; Suzuki S; Kashiwagi Y; Kusumoto K J Biosci Bioeng; 2015 Jan; 119(1):43-6. PubMed ID: 25034635 [TBL] [Abstract][Full Text] [Related]
13. Aspergillus oryzae strains with a large deletion of the aflatoxin biosynthetic homologous gene cluster differentiated by chromosomal breakage. Lee YH; Tominaga M; Hayashi R; Sakamoto K; Yamada O; Akita O Appl Microbiol Biotechnol; 2006 Sep; 72(2):339-45. PubMed ID: 16673111 [TBL] [Abstract][Full Text] [Related]
14. Nonhomologous end-joining deficiency allows large chromosomal deletions to be produced by replacement-type recombination in Aspergillus oryzae. Takahashi T; Jin FJ; Koyama Y Fungal Genet Biol; 2009 Nov; 46(11):815-24. PubMed ID: 19654050 [TBL] [Abstract][Full Text] [Related]
15. Evolution of Aspergillus oryzae before and after domestication inferred by large-scale comparative genomic analysis. Watarai N; Yamamoto N; Sawada K; Yamada T DNA Res; 2019 Dec; 26(6):465-472. PubMed ID: 31755931 [TBL] [Abstract][Full Text] [Related]
16. Hybridization and breeding of the benomyl resistant mutant, Trichoderma harziantum antagonized to phytopathogenic fungi by protoplast fusion. Ogawa K; Yoshida N; Gesnara W; Omumasaba CA; Chamuswarng C Biosci Biotechnol Biochem; 2000 Apr; 64(4):833-6. PubMed ID: 10830500 [TBL] [Abstract][Full Text] [Related]
17. Breeding and identification of novel koji molds with high activity of acid protease by genome recombination between Aspergillus oryzae and Aspergillus niger. Xu D; Pan L; Zhao H; Zhao M; Sun J; Liu D J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1255-65. PubMed ID: 21107641 [TBL] [Abstract][Full Text] [Related]
18. Comparative genomic analysis of Aspergillus oryzae strains 3.042 and RIB40 for soy sauce fermentation. Zhao G; Yao Y; Wang C; Hou L; Cao X Int J Food Microbiol; 2013 Jun; 164(2-3):148-54. PubMed ID: 23673060 [TBL] [Abstract][Full Text] [Related]
19. Generation of large chromosomal deletions in koji molds Aspergillus oryzae and Aspergillus sojae via a loop-out recombination. Takahashi T; Jin FJ; Sunagawa M; Machida M; Koyama Y Appl Environ Microbiol; 2008 Dec; 74(24):7684-93. PubMed ID: 18952883 [TBL] [Abstract][Full Text] [Related]
20. Purification and characterization of an intracellular beta-glucosidase from the protoplast fusant of Aspergillus oryzae and Aspergillus niger. Zhu FM; Du B; Gao HS; Liu CJ; Li J Prikl Biokhim Mikrobiol; 2010; 46(6):678-84. PubMed ID: 21254729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]