These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 22207154)
1. Spontaneous neural activity of the anterodorsal lobe and entopeduncular nucleus in adult zebrafish: a putative homologue of hippocampal sharp waves. Vargas R; Thorsteinsson H; Karlsson KA Behav Brain Res; 2012 Apr; 229(1):10-20. PubMed ID: 22207154 [TBL] [Abstract][Full Text] [Related]
2. GABA(A) receptor-mediated presynaptic inhibition on glutamatergic transmission. Yamamoto S; Yoshimura M; Shin MC; Wakita M; Nonaka K; Akaike N Brain Res Bull; 2011 Jan; 84(1):22-30. PubMed ID: 21044903 [TBL] [Abstract][Full Text] [Related]
3. Bumetanide, an NKCC1 antagonist, does not prevent formation of epileptogenic focus but blocks epileptic focus seizures in immature rat hippocampus. Nardou R; Ben-Ari Y; Khalilov I J Neurophysiol; 2009 Jun; 101(6):2878-88. PubMed ID: 19297515 [TBL] [Abstract][Full Text] [Related]
4. Chloride homeostasis differentially affects GABA(A) receptor- and glycine receptor-mediated effects on spontaneous circuit activity in hippocampal cell culture. Wang W; Xu TL Neurosci Lett; 2006 Oct; 406(1-2):11-6. PubMed ID: 16905250 [TBL] [Abstract][Full Text] [Related]
5. GABAB receptors in the medial septum/diagonal band slice from 16-25 day rat. Henderson Z; Jones GA Neuroscience; 2005; 132(3):789-800. PubMed ID: 15837139 [TBL] [Abstract][Full Text] [Related]
6. Spontaneous recurrent network activity in organotypic rat hippocampal slices. Mohajerani MH; Cherubini E Eur J Neurosci; 2005 Jul; 22(1):107-18. PubMed ID: 16029200 [TBL] [Abstract][Full Text] [Related]
7. Different effects of α-chloralose on spontaneous and evoked GABA release in rat hippocampal CA1 neurons. Matsuura T; Iwata S; Shin MC; Wakita M; Ogawa SK; Akaike N Brain Res Bull; 2011 May; 85(3-4):180-8. PubMed ID: 21453759 [TBL] [Abstract][Full Text] [Related]
8. Regulation of synaptic input to hypothalamic presympathetic neurons by GABA(B) receptors. Chen Q; Pan HL Neuroscience; 2006 Oct; 142(2):595-606. PubMed ID: 16887273 [TBL] [Abstract][Full Text] [Related]
9. Modeling spontaneous activity in the developing spinal cord using activity-dependent variations of intracellular chloride. Marchetti C; Tabak J; Chub N; O'Donovan MJ; Rinzel J J Neurosci; 2005 Apr; 25(14):3601-12. PubMed ID: 15814791 [TBL] [Abstract][Full Text] [Related]
10. Inhibitory actions of the gamma-aminobutyric acid in pediatric Sturge-Weber syndrome. Tyzio R; Khalilov I; Represa A; Crepel V; Zilberter Y; Rheims S; Aniksztejn L; Cossart R; Nardou R; Mukhtarov M; Minlebaev M; Epsztein J; Milh M; Becq H; Jorquera I; Bulteau C; Fohlen M; Oliver V; Dulac O; Dorfmüller G; Delalande O; Ben-Ari Y; Khazipov R Ann Neurol; 2009 Aug; 66(2):209-18. PubMed ID: 19743469 [TBL] [Abstract][Full Text] [Related]
11. Sustained depolarizing shift of the GABA reversal potential by glutamate receptor activation in hippocampal neurons. Kitamura A; Ishibashi H; Watanabe M; Takatsuru Y; Brodwick M; Nabekura J Neurosci Res; 2008 Dec; 62(4):270-7. PubMed ID: 18840481 [TBL] [Abstract][Full Text] [Related]
12. Postnatal development of intrinsic GABAergic rhythms in mouse hippocampus. Wong T; Zhang XL; Asl MN; Wu CP; Carlen PL; Zhang L Neuroscience; 2005; 134(1):107-20. PubMed ID: 15961234 [TBL] [Abstract][Full Text] [Related]
13. Opposite effects of presynaptic 5-HT3 receptor activation on spontaneous and action potential-evoked GABA release at hippocampal synapses. Dorostkar MM; Boehm S J Neurochem; 2007 Jan; 100(2):395-405. PubMed ID: 17064350 [TBL] [Abstract][Full Text] [Related]
14. Positive shifts of the GABAA receptor reversal potential due to altered chloride homeostasis is widespread after status epilepticus. Barmashenko G; Hefft S; Aertsen A; Kirschstein T; Köhling R Epilepsia; 2011 Sep; 52(9):1570-8. PubMed ID: 21899534 [TBL] [Abstract][Full Text] [Related]
15. Inhibitory synaptic transmission differs in mouse type A and B medial vestibular nucleus neurons in vitro. Camp AJ; Callister RJ; Brichta AM J Neurophysiol; 2006 May; 95(5):3208-18. PubMed ID: 16407430 [TBL] [Abstract][Full Text] [Related]
16. Enhanced excitatory and reduced inhibitory synaptic transmission contribute to persistent pain-induced neuronal hyper-responsiveness in anterior cingulate cortex. Gong KR; Cao FL; He Y; Gao CY; Wang DD; Li H; Zhang FK; An YY; Lin Q; Chen J Neuroscience; 2010 Dec; 171(4):1314-25. PubMed ID: 20951771 [TBL] [Abstract][Full Text] [Related]
17. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord. Hinckley C; Seebach B; Ziskind-Conhaim L Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878 [TBL] [Abstract][Full Text] [Related]
18. [Effect of synaptic transmission blockade and hypoglycemia on neuron impulse activity in cultured rat hippocampal neurons]. Ivanova SIu; Storozhuk MV; Kostiuk OP; Kostiuk PH Fiziol Zh (1994); 2004; 50(4):16-21. PubMed ID: 15460023 [TBL] [Abstract][Full Text] [Related]
19. Altered inhibition in lateral amygdala networks in a rat model of temporal lobe epilepsy. Benini R; Avoli M J Neurophysiol; 2006 Apr; 95(4):2143-54. PubMed ID: 16381802 [TBL] [Abstract][Full Text] [Related]
20. Regulation of synaptic inputs to paraventricular-spinal output neurons by alpha2 adrenergic receptors. Li DP; Atnip LM; Chen SR; Pan HL J Neurophysiol; 2005 Jan; 93(1):393-402. PubMed ID: 15356178 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]