These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22207618)

  • 21. Tapping the wealth of microbial data in high-throughput metabolic model reconstruction.
    Colasanti R; Edirisinghe JN; Khazaei T; Faria JP; Seaver S; Xia F; Henry C
    Methods Mol Biol; 2014; 1191():19-45. PubMed ID: 25178782
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Screening the Sargasso Sea metagenome for data to investigate genome evolution in Ostreococcus (Prasinophyceae, Chlorophyta).
    Piganeau G; Moreau H
    Gene; 2007 Dec; 406(1-2):184-90. PubMed ID: 17961934
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An integrative approach towards completing genome-scale metabolic networks.
    Christian N; May P; Kempa S; Handorf T; Ebenhöh O
    Mol Biosyst; 2009 Dec; 5(12):1889-903. PubMed ID: 19763335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient gene targeting and removal of foreign DNA by homologous recombination in the picoeukaryote Ostreococcus.
    Lozano JC; Schatt P; Botebol H; Vergé V; Lesuisse E; Blain S; Carré IA; Bouget FY
    Plant J; 2014 Jun; 78(6):1073-83. PubMed ID: 24698018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of Unique Eukaryotic Sphingolipids with Temperature-Dependent Δ8-Unsaturation from the Picoalga Ostreococcus tauri.
    Ishikawa T; Domergue F; Amato A; Corellou F
    Plant Cell Physiol; 2024 Jun; 65(6):1029-1046. PubMed ID: 38252418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic pathfinding using RPAIR annotation.
    Faust K; Croes D; van Helden J
    J Mol Biol; 2009 May; 388(2):390-414. PubMed ID: 19281817
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimizing metabolic pathways by screening for feasible synthetic reactions.
    Basler G; Grimbs S; Nikoloski Z
    Biosystems; 2012 Aug; 109(2):186-91. PubMed ID: 22575307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks.
    Prigent S; Frioux C; Dittami SM; Thiele S; Larhlimi A; Collet G; Gutknecht F; Got J; Eveillard D; Bourdon J; Plewniak F; Tonon T; Siegel A
    PLoS Comput Biol; 2017 Jan; 13(1):e1005276. PubMed ID: 28129330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-scale models of plant metabolism.
    Simons M; Misra A; Sriram G
    Methods Mol Biol; 2014; 1083():213-30. PubMed ID: 24218218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative analysis of metabolic networks provides insight into the evolution of plant pathogenic and nonpathogenic lifestyles in Pseudomonas.
    Mithani A; Hein J; Preston GM
    Mol Biol Evol; 2011 Jan; 28(1):483-99. PubMed ID: 20709733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical and genomic evolution of enzyme-catalyzed reaction networks.
    Kanehisa M
    FEBS Lett; 2013 Sep; 587(17):2731-7. PubMed ID: 23816707
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative metabolic capabilities for Micrococcus luteus NCTC 2665, the "Fleming" strain, and actinobacteria.
    Rokem JS; Vongsangnak W; Nielsen J
    Biotechnol Bioeng; 2011 Nov; 108(11):2770-5. PubMed ID: 21618466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microarray data can predict diurnal changes of starch content in the picoalga Ostreococcus.
    Sorokina O; Corellou F; Dauvillée D; Sorokin A; Goryanin I; Ball S; Bouget FY; Millar AJ
    BMC Syst Biol; 2011 Feb; 5():36. PubMed ID: 21352558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network.
    Lee J; Yun H; Feist AM; Palsson BØ; Lee SY
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):849-62. PubMed ID: 18758767
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A robust two-gene oscillator at the core of Ostreococcus tauri circadian clock.
    Morant PE; Thommen Q; Pfeuty B; Vandermoere C; Corellou F; Bouget FY; Lefranc M
    Chaos; 2010 Dec; 20(4):045108. PubMed ID: 21198120
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prasinoviruses of the marine green alga Ostreococcus tauri are mainly species specific.
    Clerissi C; Desdevises Y; Grimsley N
    J Virol; 2012 Apr; 86(8):4611-9. PubMed ID: 22318150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Matching metabolites and reactions in different metabolic networks.
    Qi X; Ozsoyoglu ZM; Ozsoyoglu G
    Methods; 2014 Oct; 69(3):282-97. PubMed ID: 25064251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PlnTFDB: an integrative plant transcription factor database.
    Riaño-Pachón DM; Ruzicic S; Dreyer I; Mueller-Roeber B
    BMC Bioinformatics; 2007 Feb; 8():42. PubMed ID: 17286856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An approach to pathway reconstruction using whole genome metabolic models and sensitive sequence searching.
    Saqi M; Dobson RJ; Kraben P; Hodgson DA; Wild DL
    J Integr Bioinform; 2009 Jul; 6(1):107. PubMed ID: 20134075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.