These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22207626)

  • 21. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period.
    Wilson PA; Norris RD
    Nature; 2001 Jul; 412(6845):425-9. PubMed ID: 11473314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction.
    Ward PD; Haggart JW; Carter ES; Wilbur D; Tipper HW; Evans T
    Science; 2001 May; 292(5519):1148-51. PubMed ID: 11349146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Marine Biodiversity, Biogeography, Deep-Sea Gradients, and Conservation.
    Costello MJ; Chaudhary C
    Curr Biol; 2017 Jun; 27(11):R511-R527. PubMed ID: 28586689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impacts of ocean acidification on intertidal benthic foraminiferal growth and calcification.
    Guamán-Guevara F; Austin H; Hicks N; Streeter R; Austin WEN
    PLoS One; 2019; 14(8):e0220046. PubMed ID: 31433797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Impact of the Latest Danian Event on Planktic Foraminiferal Faunas at ODP Site 1210 (Shatsky Rise, Pacific Ocean).
    Jehle S; Bornemann A; Deprez A; Speijer RP
    PLoS One; 2015; 10(11):e0141644. PubMed ID: 26606656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The biogeographical imprint of mass extinctions.
    Kocsis ÁT; Reddin CJ; Kiessling W
    Proc Biol Sci; 2018 May; 285(1878):. PubMed ID: 29720415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep-sea palaeoceanography of the Maldives islands (ODP hole 716A), equatorial Indian ocean during MIS 12-6.
    Sarkar S; Gupta AK
    J Biosci; 2009 Nov; 34(5):749-64. PubMed ID: 20009269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early Eocene deep-sea benthic foraminiferal faunas: Recovery from the Paleocene Eocene Thermal Maximum extinction in a greenhouse world.
    Arreguín-Rodríguez GJ; Thomas E; D'haenens S; Speijer RP; Alegret L
    PLoS One; 2018; 13(2):e0193167. PubMed ID: 29474429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extinction and time help drive the marine-terrestrial biodiversity gradient: is the ocean a deathtrap?
    Miller EC; Wiens JJ
    Ecol Lett; 2017 Jul; 20(7):911-921. PubMed ID: 28589539
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid resurgence of marine productivity after the Cretaceous-Paleogene mass extinction.
    Sepúlveda J; Wendler JE; Summons RE; Hinrichs KU
    Science; 2009 Oct; 326(5949):129-32. PubMed ID: 19797658
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Marine defaunation: animal loss in the global ocean.
    McCauley DJ; Pinsky ML; Palumbi SR; Estes JA; Joyce FH; Warner RR
    Science; 2015 Jan; 347(6219):1255641. PubMed ID: 25593191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategies in times of crisis-insights into the benthic foraminiferal record of the Palaeocene-Eocene Thermal Maximum.
    Schmidt DN; Thomas E; Authier E; Saunders D; Ridgwell A
    Philos Trans A Math Phys Eng Sci; 2018 Oct; 376(2130):. PubMed ID: 30177568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Global evolution and paleogeographic distribution of mid-Cretaceous orbitolinids.
    BouDagher-Fadel M; Price GD
    UCL Open Environ; 2019; 1():e001. PubMed ID: 37228250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Marine Metazoan Modern Mass Extinction: Improving Predictions by Integrating Fossil, Modern, and Physiological Data.
    Calosi P; Putnam HM; Twitchett RJ; Vermandele F
    Ann Rev Mar Sci; 2019 Jan; 11():369-390. PubMed ID: 30216738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diversity decoupled from ecosystem function and resilience during mass extinction recovery.
    Alvarez SA; Gibbs SJ; Bown PR; Kim H; Sheward RM; Ridgwell A
    Nature; 2019 Oct; 574(7777):242-245. PubMed ID: 31554971
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Palaeocene-Eocene carbon isotope excursion: constraints from individual shell planktonic foraminifer records.
    Zachos JC; Bohaty SM; John CM; McCarren H; Kelly DC; Nielsen T
    Philos Trans A Math Phys Eng Sci; 2007 Jul; 365(1856):1829-42. PubMed ID: 17513259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Faunal turnover of marine tetrapods during the Jurassic-Cretaceous transition.
    Benson RB; Druckenmiller PS
    Biol Rev Camb Philos Soc; 2014 Feb; 89(1):1-23. PubMed ID: 23581455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A dataset of the Plio-Pleistocene at IODP Site U1489: Benthic foraminifera stable carbon and oxygen isotopes, coarse fraction, and selected benthic foraminifera abundances.
    Dang H; Peng N; Jian Z
    Data Brief; 2020 Feb; 28():105020. PubMed ID: 31909118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Upper-ocean-to-atmosphere radiocarbon offsets imply fast deglacial carbon dioxide release.
    Rose KA; Sikes EL; Guilderson TP; Shane P; Hill TM; Zahn R; Spero HJ
    Nature; 2010 Aug; 466(7310):1093-7. PubMed ID: 20740012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Industrial-era decline in subarctic Atlantic productivity.
    Osman MB; Das SB; Trusel LD; Evans MJ; Fischer H; Grieman MM; Kipfstuhl S; McConnell JR; Saltzman ES
    Nature; 2019 May; 569(7757):551-555. PubMed ID: 31061499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.