These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22207869)

  • 1. Linking microbial heterotrophic activity and sediment lithology in oxic, oligotrophic sub-seafloor sediments of the north atlantic ocean.
    Picard A; Ferdelman TG
    Front Microbiol; 2011; 2():263. PubMed ID: 22207869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indigenous Ammonia-Oxidizing Archaea in Oxic Subseafloor Oceanic Crust.
    Zhao R; Dahle H; Ramírez GA; Jørgensen SL
    mSystems; 2020 Mar; 5(2):. PubMed ID: 32156797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Subsurface Life from North Pond: Enrichment, Isolation, Characterization and Genomes of Heterotrophic Bacteria.
    Russell JA; León-Zayas R; Wrighton K; Biddle JF
    Front Microbiol; 2016; 7():678. PubMed ID: 27242705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial Organic Matter Degradation Potential in Baltic Sea Sediments Is Influenced by Depositional Conditions and
    Zinke LA; Glombitza C; Bird JT; Røy H; Jørgensen BB; Lloyd KG; Amend JP; Reese BK
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30504213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity and Metabolic Potentials of Subsurface Crustal Microorganisms from the Western Flank of the Mid-Atlantic Ridge.
    Zhang X; Feng X; Wang F
    Front Microbiol; 2016; 7():363. PubMed ID: 27047476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen consumption rates in subseafloor basaltic crust derived from a reaction transport model.
    Orcutt BN; Wheat CG; Rouxel O; Hulme S; Edwards KJ; Bach W
    Nat Commun; 2013; 4():2539. PubMed ID: 24071791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen Stimulates the Growth of Subsurface Basalt-associated Microorganisms at the Western Flank of the Mid-Atlantic Ridge.
    Zhang X; Fang J; Bach W; Edwards KJ; Orcutt BN; Wang F
    Front Microbiol; 2016; 7():633. PubMed ID: 27199959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size and Carbon Content of Sub-seafloor Microbial Cells at Landsort Deep, Baltic Sea.
    Braun S; Morono Y; Littmann S; Kuypers M; Aslan H; Dong M; Jørgensen BB; Lomstein BA
    Front Microbiol; 2016; 7():1375. PubMed ID: 27630628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial Inventory of Deeply Buried Oceanic Crust from a Young Ridge Flank.
    Jørgensen SL; Zhao R
    Front Microbiol; 2016; 7():820. PubMed ID: 27303398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential Mechanisms for Microbial Energy Acquisition in Oxic Deep-Sea Sediments.
    Tully BJ; Heidelberg JF
    Appl Environ Microbiol; 2016 Jul; 82(14):4232-43. PubMed ID: 27208118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic microbial respiration in 86-million-year-old deep-sea red clay.
    Røy H; Kallmeyer J; Adhikari RR; Pockalny R; Jørgensen BB; D'Hondt S
    Science; 2012 May; 336(6083):922-5. PubMed ID: 22605778
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Hoshino T; Toki T; Ijiri A; Morono Y; Machiyama H; Ashi J; Okamura K; Inagaki F
    Front Microbiol; 2017; 8():1135. PubMed ID: 28676800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural and artificial radionuclides in a marine core. First results of
    Villa-Alfageme M; Chamizo E; Santos-Arévalo FJ; López-Gutierrez JM; Gómez-Martínez I; Hurtado-Bermúdez S
    J Environ Radioact; 2018 Jun; 186():152-160. PubMed ID: 29061309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the abundance, metabolic potential and gene expression of subseafloor Chloroflexi in million-year-old oxic and anoxic abyssal clay.
    Vuillemin A; Kerrigan Z; D'Hondt S; Orsi WD
    FEMS Microbiol Ecol; 2020 Nov; 96(12):. PubMed ID: 33150943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerobic microbial life persists in oxic marine sediment as old as 101.5 million years.
    Morono Y; Ito M; Hoshino T; Terada T; Hori T; Ikehara M; D'Hondt S; Inagaki F
    Nat Commun; 2020 Jul; 11(1):3626. PubMed ID: 32724059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sediment Microbial Diversity of Three Deep-Sea Hydrothermal Vents Southwest of the Azores.
    Cerqueira T; Pinho D; Froufe H; Santos RS; Bettencourt R; Egas C
    Microb Ecol; 2017 Aug; 74(2):332-349. PubMed ID: 28144700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity and growth of microbial populations in pressurized deep-sea sediment and animal gut samples.
    Tabor PS; Deming JW; Ohwada K; Colwell RR
    Appl Environ Microbiol; 1982 Aug; 44(2):413-22. PubMed ID: 6127054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimethylsulfoniopropionate Biosynthetic Bacteria in the Subseafloor Sediments of the South China Sea.
    Zhang Y; Sun K; Sun C; Shi X; Todd JD; Zhang XH
    Front Microbiol; 2021; 12():731524. PubMed ID: 34707588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metagenomics Reveals Microbial Diversity and Metabolic Potentials of Seawater and Surface Sediment From a Hadal Biosphere at the Yap Trench.
    Zhang X; Xu W; Liu Y; Cai M; Luo Z; Li M
    Front Microbiol; 2018; 9():2402. PubMed ID: 30369913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.