These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 22208)

  • 1. [Researches to the conversion of sorbit into sorbose by Acetobacter suboxydans (author's transl)].
    Kölblin R; Tröger R
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1977; 132(3):196-203. PubMed ID: 22208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermentative production of L-sorbose from D-sorbitol by Acetobacter suboxydans (vinegar isolate).
    Indian J Exp Biol; 1974 Sep; 12(5):422-4. PubMed ID: 4448494
    [No Abstract]   [Full Text] [Related]  

  • 3. [Studies on sorbose fermentation in a batch and continuous cultures].
    Müller J
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1966; 120(4):349-78. PubMed ID: 6012785
    [No Abstract]   [Full Text] [Related]  

  • 4. [A method for the control of the inoculum during biological oxidation of sorbitol into sorbose].
    SHTERNBERG MG; ZHURUBITSA SI
    Mikrobiologiia; 1960; 29():146-9. PubMed ID: 14446257
    [No Abstract]   [Full Text] [Related]  

  • 5. [The influence of cultivation conditions on the levan saccharase activity of Acetobacter suboxydans var. levanicum L-1].
    Elisashvili VI
    Prikl Biokhim Mikrobiol; 1974; 10(2):216-21. PubMed ID: 4830969
    [No Abstract]   [Full Text] [Related]  

  • 6. [Effect of methylene blue on oxidation of sorbitol into sorbose by Acetobacter melanogenum].
    MIKHLIN ED; GOLYSHEVA MG
    Biokhimiia; 1954; 19(5):549-56. PubMed ID: 13230126
    [No Abstract]   [Full Text] [Related]  

  • 7. [Gas exchange in Acetobacter during oxidation of sorbitol with sorbose].
    MITIUSHOVA NM
    Mikrobiologiia; 1954; 23(4):400-9. PubMed ID: 13223517
    [No Abstract]   [Full Text] [Related]  

  • 8. Kinetic studies on sorbose fermentation.
    Krieg P; Ettlinger L
    Pathol Microbiol (Basel); 1970; 36(5):343. PubMed ID: 5513574
    [No Abstract]   [Full Text] [Related]  

  • 9. [Growth of Acetobacter suboxydans on a medium with sorbitol at various values of redox potential].
    Sukharevich VI; Razumovskaia ZG
    Mikrobiologiia; 1968; 37(5):832-6. PubMed ID: 5735973
    [No Abstract]   [Full Text] [Related]  

  • 10. [Studies on the intensification of the transformation of glycerin to dihydroxyacetone by Acetobacter suboxydans].
    Sattler K
    Z Allg Mikrobiol; 1965; 5(2):136-46. PubMed ID: 5339218
    [No Abstract]   [Full Text] [Related]  

  • 11. Optimized synthesis of L-sorbose by C(5)-dehydrogenation of D-sorbitol with Gluconobacter oxydans.
    De Wulf P; Soetaert W; Vandamme EJ
    Biotechnol Bioeng; 2000 Aug; 69(3):339-43. PubMed ID: 10861414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Enzymatic activity of Acetobacter suboxydans. Influence of pH on the induction of 5-ketogenic activity].
    Galante E; Scalaffa P
    Boll Soc Ital Biol Sper; 1964 Oct; 40(20):1265-7. PubMed ID: 5877161
    [No Abstract]   [Full Text] [Related]  

  • 13. [SORBITE OXIDATION DURING INTENSIVE AND DELAYED ACETOBACTER SUBOXYDANS REPRODUCTION].
    ZHDAN-PUSHKINA SM; KRENEVA RA
    Mikrobiologiia; 1963; 32():711-6. PubMed ID: 14074539
    [No Abstract]   [Full Text] [Related]  

  • 14. Cloning and nucleotide sequencing of the membrane-bound L-sorbosone dehydrogenase gene of Acetobacter liquefaciens IFO 12258 and its expression in Gluconobacter oxydans.
    Shinjoh M; Tomiyama N; Asakura A; Hoshino T
    Appl Environ Microbiol; 1995 Feb; 61(2):413-20. PubMed ID: 7574579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous 2-keto-L-gulonic acid fermentation from L-sorbose by Ketogulonigenium vulgare DSM 4025.
    Takagi Y; Sugisawa T; Hoshino T
    Appl Microbiol Biotechnol; 2009 Apr; 82(6):1049-56. PubMed ID: 19137290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Method of determination of the activity of glycerol dehydrogenase in the submerged culture of Acetobacter suboxydans].
    Overchenko MB; Skorokhodova VA; Dobrolinskaia GM
    Prikl Biokhim Mikrobiol; 1976; 12(4):622-6. PubMed ID: 17111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New developments in oxidative fermentation.
    Adachi O; Moonmangmee D; Toyama H; Yamada M; Shinagawa E; Matsushita K
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):643-53. PubMed ID: 12664142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADPH-dependent L-sorbose reductase is responsible for L-sorbose assimilation in Gluconobacter suboxydans IFO 3291.
    Shinjoh M; Tazoe M; Hoshino T
    J Bacteriol; 2002 Feb; 184(3):861-3. PubMed ID: 11790761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term storage of acetic acid bacteria by means of lyophilization.
    Sourek J; Kulhánek M
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1969; 123(6):580-5. PubMed ID: 4912749
    [No Abstract]   [Full Text] [Related]  

  • 20. Elevation of ceramide in Acetobacter malorum S24 by low pH stress and high temperature stress.
    Ogawa S; Tachimoto H; Kaga T
    J Biosci Bioeng; 2010 Jan; 109(1):32-6. PubMed ID: 20129078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.