These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22208529)

  • 41. Arachidonic acid metabolism by human cytochrome P450s 2C8, 2C9, 2E1, and 1A2: regioselective oxygenation and evidence for a role for CYP2C enzymes in arachidonic acid epoxygenation in human liver microsomes.
    Rifkind AB; Lee C; Chang TK; Waxman DJ
    Arch Biochem Biophys; 1995 Jul; 320(2):380-9. PubMed ID: 7625847
    [TBL] [Abstract][Full Text] [Related]  

  • 42. How do substrates enter and products exit the buried active site of cytochrome P450cam? 2. Steered molecular dynamics and adiabatic mapping of substrate pathways.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):813-30. PubMed ID: 11061977
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cytochrome P450 2C9 plays an important role in the regulation of exercise-induced skeletal muscle blood flow and oxygen uptake in humans.
    Hillig T; Krustrup P; Fleming I; Osada T; Saltin B; Hellsten Y
    J Physiol; 2003 Jan; 546(Pt 1):307-14. PubMed ID: 12509498
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of the inhibitory potential of Ginkgo biloba, Echinacea purpurea, and Serenoa repens on the metabolic activity of cytochrome P450 3A4, 2D6, and 2C9.
    Yale SH; Glurich I
    J Altern Complement Med; 2005 Jun; 11(3):433-9. PubMed ID: 15992226
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimizing bacterial expression of catalytically active human cytochromes P450: comparison of CYP2C8 and CYP2C9.
    Boye SL; Kerdpin O; Elliot DJ; Miners JO; Kelly L; McKinnon RA; Bhasker CR; Yoovathaworn K; Birkett DJ
    Xenobiotica; 2004 Jan; 34(1):49-60. PubMed ID: 14742136
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation, characterization, and substrate metabolism of gold-immobilized cytochrome P450 2C9.
    Gannett PM; Kabulski J; Perez FA; Liu Z; Lederman D; Locuson CW; Ayscue RR; Thomsen NM; Tracy TS
    J Am Chem Soc; 2006 Jul; 128(26):8374-5. PubMed ID: 16802783
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Conserved Allosteric Site on Drug-Metabolizing CYPs: A Systematic Computational Assessment.
    Fischer A; Smieško M
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948012
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative binding models for CYP2C9 based on benzbromarone analogues.
    Locuson CW; Rock DA; Jones JP
    Biochemistry; 2004 Jun; 43(22):6948-58. PubMed ID: 15170332
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of type II ligands in CYP2C9 and CYP3A4.
    Ahlström MM; Zamora I
    J Med Chem; 2008 Mar; 51(6):1755-63. PubMed ID: 18311908
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamics and hydration of the active sites of mammalian cytochromes P450 probed by molecular dynamics simulations.
    Hendrychova T; Berka K; Navratilova V; Anzenbacher P; Otyepka M
    Curr Drug Metab; 2012 Feb; 13(2):177-89. PubMed ID: 22208532
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crystal structures of cytochrome P450 2B4 in complex with the inhibitor 1-biphenyl-4-methyl-1H-imidazole: ligand-induced structural response through alpha-helical repositioning.
    Gay SC; Sun L; Maekawa K; Halpert JR; Stout CD
    Biochemistry; 2009 Jun; 48(22):4762-71. PubMed ID: 19397311
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CYP2C9 structure-metabolism relationships: substrates, inhibitors, and metabolites.
    Ahlström MM; Ridderström M; Zamora I
    J Med Chem; 2007 Nov; 50(22):5382-91. PubMed ID: 17915853
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Essential requirements for substrate binding affinity and selectivity toward human CYP2 family enzymes.
    Lewis DF
    Arch Biochem Biophys; 2003 Jan; 409(1):32-44. PubMed ID: 12464242
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Theoretical investigation of differences in nitroreduction of aristolochic acid I by cytochromes P450 1A1, 1A2 and 1B1.
    Jerabek P; Martinek V; Stiborova M
    Neuro Endocrinol Lett; 2012; 33 Suppl 3():25-32. PubMed ID: 23353840
    [TBL] [Abstract][Full Text] [Related]  

  • 55. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Maribavir pharmacokinetics and the effects of multiple-dose maribavir on cytochrome P450 (CYP) 1A2, CYP 2C9, CYP 2C19, CYP 2D6, CYP 3A, N-acetyltransferase-2, and xanthine oxidase activities in healthy adults.
    Ma JD; Nafziger AN; Villano SA; Gaedigk A; Bertino JS
    Antimicrob Agents Chemother; 2006 Apr; 50(4):1130-5. PubMed ID: 16569820
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Possible involvement of multiple human cytochrome P450 isoforms in the liver metabolism of propofol.
    Guitton J; Buronfosse T; Desage M; Flinois JP; Perdrix JP; Brazier JL; Beaune P
    Br J Anaesth; 1998 Jun; 80(6):788-95. PubMed ID: 9771309
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of atypical cytochrome P450 kinetics with two-substrate models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites.
    Korzekwa KR; Krishnamachary N; Shou M; Ogai A; Parise RA; Rettie AE; Gonzalez FJ; Tracy TS
    Biochemistry; 1998 Mar; 37(12):4137-47. PubMed ID: 9521735
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of human cytochrome P450 isoforms involved in the metabolism of S-2-[4-(3-methyl-2-thienyl)phenyl]propionic acid.
    Taguchi K; Konishi T; Nishikawa H; Kitamura S
    Xenobiotica; 1999 Sep; 29(9):899-907. PubMed ID: 10548450
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ligand tunnels in T. brucei and human CYP51: Insights for parasite-specific drug design.
    Yu X; Nandekar P; Mustafa G; Cojocaru V; Lepesheva GI; Wade RC
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt A):67-78. PubMed ID: 26493722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.