BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 22208867)

  • 1. Designing nanoparticle translocation through membranes by computer simulations.
    Ding HM; Tian WD; Ma YQ
    ACS Nano; 2012 Feb; 6(2):1230-8. PubMed ID: 22208867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing nanoparticle translocation through cell membranes by varying amphiphilic polymer coatings.
    Zhang L; Becton M; Wang X
    J Phys Chem B; 2015 Mar; 119(9):3786-94. PubMed ID: 25675048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles.
    Ding HM; Ma YQ
    Biomaterials; 2012 Aug; 33(23):5798-802. PubMed ID: 22607914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship.
    Lin J; Zhang H; Chen Z; Zheng Y
    ACS Nano; 2010 Sep; 4(9):5421-9. PubMed ID: 20799717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-structure-regulated penetration of nanoparticles across a cell membrane.
    Li Y; Li X; Li Z; Gao H
    Nanoscale; 2012 Jun; 4(12):3768-75. PubMed ID: 22609866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle translocation through a lipid bilayer tuned by surface chemistry.
    da Rocha EL; Caramori GF; Rambo CR
    Phys Chem Chem Phys; 2013 Feb; 15(7):2282-90. PubMed ID: 23223270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing janus nanoparticles to create controllable pores in membranes.
    Alexeev A; Uspal WE; Balazs AC
    ACS Nano; 2008 Jun; 2(6):1117-22. PubMed ID: 19206328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between Janus particles and membranes.
    Ding HM; Ma YQ
    Nanoscale; 2012 Feb; 4(4):1116-22. PubMed ID: 22116542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of nanoparticle charge and shape anisotropy on translocation through cell membranes.
    Nangia S; Sureshkumar R
    Langmuir; 2012 Dec; 28(51):17666-71. PubMed ID: 23088323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissipative particle dynamics simulations of polymer-protected nanoparticle self-assembly.
    Spaeth JR; Kevrekidis IG; Panagiotopoulos AZ
    J Chem Phys; 2011 Nov; 135(18):184903. PubMed ID: 22088077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect.
    Li Y; Chen X; Gu N
    J Phys Chem B; 2008 Dec; 112(51):16647-53. PubMed ID: 19032046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress.
    Lai K; Wang B; Zhang Y; Zheng Y
    Phys Chem Chem Phys; 2013 Jan; 15(1):270-8. PubMed ID: 23165312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer simulation of the role of protein corona in cellular delivery of nanoparticles.
    Ding HM; Ma YQ
    Biomaterials; 2014 Oct; 35(30):8703-10. PubMed ID: 25005681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular release of endocytosed nanoparticles upon a change of ligand-receptor interaction.
    VĂ¡cha R; Martinez-Veracoechea FJ; Frenkel D
    ACS Nano; 2012 Dec; 6(12):10598-605. PubMed ID: 23148579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of geometric nanoparticle rotation on cellular internalization process.
    Yang K; Yuan B; Ma YQ
    Nanoscale; 2013 Sep; 5(17):7998-8006. PubMed ID: 23863854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle-induced permeability of lipid membranes.
    Pogodin S; Werner M; Sommer JU; Baulin VA
    ACS Nano; 2012 Dec; 6(12):10555-61. PubMed ID: 23128273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between water molecules and zinc sulfide nanoparticles studied by temperature-programmed desorption and molecular dynamics simulations.
    Zhang H; Rustad JR; Banfield JF
    J Phys Chem A; 2007 Jun; 111(23):5008-14. PubMed ID: 17518448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the effect of combustion-generated carbon nanoparticles on biological membranes: a computer simulation study.
    Chang R; Violi A
    J Phys Chem B; 2006 Mar; 110(10):5073-83. PubMed ID: 16526750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A vesicle cell under collision with a Janus or homogeneous nanoparticle: translocation dynamics and late-stage morphology.
    Arai N; Yasuoka K; Zeng XC
    Nanoscale; 2013 Oct; 5(19):9089-100. PubMed ID: 23904003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design strategy of surface decoration for efficient delivery of nanoparticles by computer simulation.
    Ding HM; Ma YQ
    Sci Rep; 2016 May; 6():26783. PubMed ID: 27226273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.