These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 22209015)

  • 21. Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty?
    Bonawitz ND; Chapple C
    Curr Opin Biotechnol; 2013 Apr; 24(2):336-43. PubMed ID: 23228388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lignification: Flexibility, Biosynthesis and Regulation.
    Zhao Q
    Trends Plant Sci; 2016 Aug; 21(8):713-721. PubMed ID: 27131502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus.
    da Costa RM; Lee SJ; Allison GG; Hazen SP; Winters A; Bosch M
    Ann Bot; 2014 Oct; 114(6):1265-77. PubMed ID: 24737720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering of plant cell walls for enhanced biofuel production.
    Loqué D; Scheller HV; Pauly M
    Curr Opin Plant Biol; 2015 Jun; 25():151-61. PubMed ID: 26051036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plant glycosyl hydrolases and biofuels: a natural marriage.
    Lopez-Casado G; Urbanowicz BR; Damasceno CM; Rose JK
    Curr Opin Plant Biol; 2008 Jun; 11(3):329-37. PubMed ID: 18396092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic engineering of grass cell wall polysaccharides for biorefining.
    Bhatia R; Gallagher JA; Gomez LD; Bosch M
    Plant Biotechnol J; 2017 Sep; 15(9):1071-1092. PubMed ID: 28557198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant biotechnology for lignocellulosic biofuel production.
    Li Q; Song J; Peng S; Wang JP; Qu GZ; Sederoff RR; Chiang VL
    Plant Biotechnol J; 2014 Dec; 12(9):1174-92. PubMed ID: 25330253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strategies for the production of cell wall-deconstructing enzymes in lignocellulosic biomass and their utilization for biofuel production.
    Park SH; Ong RG; Sticklen M
    Plant Biotechnol J; 2016 Jun; 14(6):1329-44. PubMed ID: 26627868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of Cellulose Synthesis in Plant Cells.
    Maleki SS; Mohammadi K; Ji KS
    ScientificWorldJournal; 2016; 2016():8641373. PubMed ID: 27314060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Xylan biosynthesis.
    Rennie EA; Scheller HV
    Curr Opin Biotechnol; 2014 Apr; 26():100-7. PubMed ID: 24679265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice.
    Li F; Xie G; Huang J; Zhang R; Li Y; Zhang M; Wang Y; Li A; Li X; Xia T; Qu C; Hu F; Ragauskas AJ; Peng L
    Plant Biotechnol J; 2017 Sep; 15(9):1093-1104. PubMed ID: 28117552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lignin bioengineering.
    Eudes A; Liang Y; Mitra P; Loqué D
    Curr Opin Biotechnol; 2014 Apr; 26():189-98. PubMed ID: 24607805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellulose synthesis: a complex complex.
    Mutwil M; Debolt S; Persson S
    Curr Opin Plant Biol; 2008 Jun; 11(3):252-7. PubMed ID: 18485800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic manipulation of lignocellulosic biomass for bioenergy.
    Wang P; Dudareva N; Morgan JA; Chapple C
    Curr Opin Chem Biol; 2015 Dec; 29():32-9. PubMed ID: 26342806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in solid-state NMR of cellulose.
    Foston M
    Curr Opin Biotechnol; 2014 Jun; 27():176-84. PubMed ID: 24590189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coordinated activation of cellulose and repression of lignin biosynthesis pathways in rice.
    Ambavaram MM; Krishnan A; Trijatmiko KR; Pereira A
    Plant Physiol; 2011 Feb; 155(2):916-31. PubMed ID: 21205614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two-year field analysis of reduced recalcitrance transgenic switchgrass.
    Baxter HL; Mazarei M; Labbe N; Kline LM; Cheng Q; Windham MT; Mann DG; Fu C; Ziebell A; Sykes RW; Rodriguez M; Davis MF; Mielenz JR; Dixon RA; Wang ZY; Stewart CN
    Plant Biotechnol J; 2014 Sep; 12(7):914-24. PubMed ID: 24751162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic engineering of novel lignin in biomass crops.
    Vanholme R; Morreel K; Darrah C; Oyarce P; Grabber JH; Ralph J; Boerjan W
    New Phytol; 2012 Dec; 196(4):978-1000. PubMed ID: 23035778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides.
    Artzi L; Bayer EA; Moraïs S
    Nat Rev Microbiol; 2017 Feb; 15(2):83-95. PubMed ID: 27941816
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solutions for dissolution--engineering cell walls for deconstruction.
    Mansfield SD
    Curr Opin Biotechnol; 2009 Jun; 20(3):286-94. PubMed ID: 19481436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.