BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 22209109)

  • 1. TAG, you're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation.
    Merchant SS; Kropat J; Liu B; Shaw J; Warakanont J
    Curr Opin Biotechnol; 2012 Jun; 23(3):352-63. PubMed ID: 22209109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triacylglycerol Accumulation in Photosynthetic Cells in Plants and Algae.
    Du ZY; Benning C
    Subcell Biochem; 2016; 86():179-205. PubMed ID: 27023236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter.
    Iwai M; Ikeda K; Shimojima M; Ohta H
    Plant Biotechnol J; 2014 Aug; 12(6):808-19. PubMed ID: 24909748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Level Accumulation of Triacylglycerol and Starch in Photoautotrophically Grown Chlamydomonas debaryana NIES-2212.
    Toyoshima M; Sato N
    Plant Cell Physiol; 2015 Dec; 56(12):2447-56. PubMed ID: 26542110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of Spherical Palmelloid Colony with Enhanced Lipid Accumulation by Gel Encapsulation of Chlamydomonas debaryana NIES-2212.
    Yoshitomi T; Kaminaga S; Sato N; Toyoshima M; Moriyama T; Yoshimoto K
    Plant Cell Physiol; 2020 Jan; 61(1):158-168. PubMed ID: 31589321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of type 2 diacylglycerol acyltransferases in Chlamydomonas reinhardtii reveals their distinct substrate specificities and functions in triacylglycerol biosynthesis.
    Liu J; Han D; Yoon K; Hu Q; Li Y
    Plant J; 2016 Apr; 86(1):3-19. PubMed ID: 26919811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Genetics Strategies for Identifying New Components of Lipid Metabolism in the Green Alga Chlamydomonas reinhardtii.
    Li X; Jonikas MC
    Subcell Biochem; 2016; 86():223-47. PubMed ID: 27023238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii.
    La Russa M; Bogen C; Uhmeyer A; Doebbe A; Filippone E; Kruse O; Mussgnug JH
    J Biotechnol; 2012 Nov; 162(1):13-20. PubMed ID: 22542934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triacylglycerol profiling of microalgae Chlamydomonas reinhardtii and Nannochloropsis oceanica.
    Liu B; Vieler A; Li C; Daniel Jones A; Benning C
    Bioresour Technol; 2013 Oct; 146():310-316. PubMed ID: 23948268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endoplasmic reticulum acyltransferase with prokaryotic substrate preference contributes to triacylglycerol assembly in
    Kim Y; Terng EL; Riekhof WR; Cahoon EB; Cerutti H
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):1652-1657. PubMed ID: 29382746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii.
    Li X; Moellering ER; Liu B; Johnny C; Fedewa M; Sears BB; Kuo MH; Benning C
    Plant Cell; 2012 Nov; 24(11):4670-86. PubMed ID: 23161887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169.
    Msanne J; Xu D; Konda AR; Casas-Mollano JA; Awada T; Cahoon EB; Cerutti H
    Phytochemistry; 2012 Mar; 75():50-9. PubMed ID: 22226037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differently localized lysophosphatidic acid acyltransferases crucial for triacylglycerol biosynthesis in the oleaginous alga Nannochloropsis.
    Nobusawa T; Hori K; Mori H; Kurokawa K; Ohta H
    Plant J; 2017 May; 90(3):547-559. PubMed ID: 28218992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of triacylglycerol and starch production in Chlamydomonas debaryana NIES-2212 with regard to light intensity and CO2 concentration.
    Toyoshima M; Sato N
    Microbiology (Reading); 2018 Mar; 164(3):359-368. PubMed ID: 29458672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of a mutant defective in triacylglycerol accumulation in nitrogen-starved Chlamydomonas reinhardtii.
    Hung CH; Kanehara K; Nakamura Y
    Biochim Biophys Acta; 2016 Sep; 1861(9 Pt B):1282-1293. PubMed ID: 27060488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol.
    Li Y; Han D; Hu G; Dauvillee D; Sommerfeld M; Ball S; Hu Q
    Metab Eng; 2010 Jul; 12(4):387-91. PubMed ID: 20172043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress-induced neutral lipid biosynthesis in microalgae - Molecular, cellular and physiological insights.
    Zienkiewicz K; Du ZY; Ma W; Vollheyde K; Benning C
    Biochim Biophys Acta; 2016 Sep; 1861(9 Pt B):1269-1281. PubMed ID: 26883557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Omics in Chlamydomonas for Biofuel Production.
    Aucoin HR; Gardner J; Boyle NR
    Subcell Biochem; 2016; 86():447-69. PubMed ID: 27023246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii.
    Yoon K; Han D; Li Y; Sommerfeld M; Hu Q
    Plant Cell; 2012 Sep; 24(9):3708-24. PubMed ID: 23012436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology.
    Liang MH; Jiang JG
    Prog Lipid Res; 2013 Oct; 52(4):395-408. PubMed ID: 23685199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.