BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 22209326)

  • 1. Microbial removal of NOX at high temperature by a novel aerobic strain Chelatococcus daeguensis TAD1 in a biotrickling filter.
    Yang Y; Huang S; Liang W; Zhang Y; Huang H; Xu F
    J Hazard Mater; 2012 Feb; 203-204():326-32. PubMed ID: 22209326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of nitric oxide in a biotrickling filter under thermophilic condition using Chelatococcus daeguensis.
    Liang W; Huang S; Liu J; Zhang R; Yan F
    J Air Waste Manag Assoc; 2012 May; 62(5):509-16. PubMed ID: 22696801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and modeling study on nitric oxide removal in a biotrickling filter using Chelatococcus daeguensis under thermophilic condition.
    Liang W; Huang S; Yang Y; Jiang R
    Bioresour Technol; 2012 Dec; 125():82-7. PubMed ID: 23026317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen removal by Chelatococcus daeguensis TAD1 and its denitrification gene identification.
    Yang Y; Huang S; Zhang Y; Xu F
    Appl Biochem Biotechnol; 2014 Jan; 172(2):829-39. PubMed ID: 24122713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cr(VI) removal from aqueous solution by thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1 in the presence of single and multiple heavy metals.
    Li H; Huang S; Zhang Y
    J Microbiol; 2016 Sep; 54(9):602-610. PubMed ID: 27572509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete genome sequence of the aerobically denitrifying thermophilic bacterium Chelatococcus daeguensis TAD1.
    Yang Y; Lin E; Huang S
    Braz J Microbiol; 2017; 48(4):615-616. PubMed ID: 28610831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide removal from flue gas with a biotrickling filter using Pseudomonas putida.
    Jiang R; Huang S; Chow AT; Yang J
    J Hazard Mater; 2009 May; 164(2-3):432-41. PubMed ID: 18835098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study on the production of poly(3-hydroxybutyrate) by thermophilic Chelatococcus daeguensis TAD1: a good candidate for large-scale production.
    Xu F; Huang S; Liu Y; Zhang Y; Chen S
    Appl Microbiol Biotechnol; 2014 May; 98(9):3965-74. PubMed ID: 24477383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of a new suspended filler biofilter for removal of nitrogen oxides under thermophilic conditions and microbial community analysis.
    Han L; Shaobin H; Zhendong W; Pengfei C; Yongqing Z
    Sci Total Environ; 2016 Aug; 562():533-541. PubMed ID: 27110967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Identification and denitrification characteristics of a thermophilic aerobic denitrifier].
    Zhang M; Huang SB
    Huan Jing Ke Xue; 2011 Jan; 32(1):259-65. PubMed ID: 21404696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field applications of a bio-trickling filter for the removal of nitrogen oxides from flue gas.
    Jiang R; Huang S; Yang J; Deng K; Liu Z
    Biotechnol Lett; 2009 Jul; 31(7):967-73. PubMed ID: 19387558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification of waste gas containing high concentration trimethylamine in biotrickling filter inoculated with B350 mixed microorganisms.
    Wan S; Li G; Zu L; An T
    Bioresour Technol; 2011 Jun; 102(12):6757-60. PubMed ID: 21524905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential application of aerobic denitrifying bacterium Pseudomonas aeruginosa PCN-2 in nitrogen oxides (NOx) removal from flue gas.
    Zheng M; Li C; Liu S; Gui M; Ni J
    J Hazard Mater; 2016 Nov; 318():571-578. PubMed ID: 27469045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The control of mercury vapor using biotrickling filters.
    Philip L; Deshusses MA
    Chemosphere; 2008 Jan; 70(3):411-7. PubMed ID: 17692357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Operational and microbiological aspects of a bioaugmented two-stage biotrickling filter removing hydrogen sulfide and dimethyl sulfide.
    Sercu B; Núñez D; Van Langenhove H; Aroca G; Verstraete W
    Biotechnol Bioeng; 2005 Apr; 90(2):259-69. PubMed ID: 15739171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous desulfurization and denitrification from flue gas by Ferrate(VI).
    Zhao Y; Han Y; Ma T; Guo T
    Environ Sci Technol; 2011 May; 45(9):4060-5. PubMed ID: 21466216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal efficiency of high-concentration H2S in a pilot-scale biotrickling filter.
    Chen JM; Jiang LY; Sha HL
    Environ Technol; 2006 Jul; 27(7):759-66. PubMed ID: 16894820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elimination of NH₃ and odor from composting by biotrickling filter and preliminary exploration on molecular biology.
    Xue N; Wang Q; Wu C; Zhao P; Xie W
    Water Sci Technol; 2011; 63(4):747-53. PubMed ID: 21330723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the removal of ethanethiol in twin-biotrickling filters inoculated with strain RG-1 and B350 mixed microorganisms.
    An T; Wan S; Li G; Sun L; Guo B
    J Hazard Mater; 2010 Nov; 183(1-3):372-80. PubMed ID: 20692095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental aspects of combined NOx and SO2 removal from flue-gas mixture in an integrated wet scrubber-electrochemical cell system.
    Chandrasekara Pillai K; Chung SJ; Raju T; Moon IS
    Chemosphere; 2009 Jul; 76(5):657-64. PubMed ID: 19500817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.