These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 22209507)
1. A subject-specific anisotropic visco-hyperelastic finite element model of female pelvic floor stress and strain during the second stage of labor. Jing D; Ashton-Miller JA; DeLancey JO J Biomech; 2012 Feb; 45(3):455-60. PubMed ID: 22209507 [TBL] [Abstract][Full Text] [Related]
2. Finite element model focused on stress distribution in the levator ani muscle during vaginal delivery. Krofta L; Havelková L; Urbánková I; Krčmář M; Hynčík L; Feyereisl J Int Urogynecol J; 2017 Feb; 28(2):275-284. PubMed ID: 27562467 [TBL] [Abstract][Full Text] [Related]
3. Effects of nonlinear muscle elasticity on pelvic floor mechanics during vaginal childbirth. Li X; Kruger JA; Nash MP; Nielsen PM J Biomech Eng; 2010 Nov; 132(11):111010. PubMed ID: 21034151 [TBL] [Abstract][Full Text] [Related]
4. On the management of maternal pushing during the second stage of labor: a biomechanical study considering passive tissue fatigue damage accumulation. Vila Pouca MCP; Ferreira JPS; Parente MPL; Natal Jorge RM; Ashton-Miller JA Am J Obstet Gynecol; 2022 Aug; 227(2):267.e1-267.e20. PubMed ID: 35101408 [TBL] [Abstract][Full Text] [Related]
5. [Characteristics of pelvic diaphragm hiatus in pregnant women with stress urinary incontinence detected by transperineal three-dimensional ultrasound]. Wu QK; Mao XY; Luo LM; Ying T; Li Q; Teng YC Zhonghua Fu Chan Ke Za Zhi; 2010 May; 45(5):326-30. PubMed ID: 20646439 [TBL] [Abstract][Full Text] [Related]
6. [Two-dimensional equivalent mechanical modeling and finite element analysis of normal female pelvic floor system]. Li S; Yao TQ; Wang HF; Wen XW; Lin H; Gao ZH; Zhang Q; Mo Y; Tang D; Cheng Y; Liu XB; Shen JH Zhonghua Yi Xue Za Zhi; 2022 Jul; 102(28):2189-2195. PubMed ID: 35872583 [No Abstract] [Full Text] [Related]
7. Quantity and distribution of levator ani stretch during simulated vaginal childbirth. Hoyte L; Damaser MS; Warfield SK; Chukkapalli G; Majumdar A; Choi DJ; Trivedi A; Krysl P Am J Obstet Gynecol; 2008 Aug; 199(2):198.e1-5. PubMed ID: 18513684 [TBL] [Abstract][Full Text] [Related]
8. A Geometric Capacity-Demand Analysis of Maternal Levator Muscle Stretch Required for Vaginal Delivery. Tracy PV; DeLancey JO; Ashton-Miller JA J Biomech Eng; 2016 Feb; 138(2):021001. PubMed ID: 26746116 [TBL] [Abstract][Full Text] [Related]
9. On the effect of labour durations using an anisotropic visco-hyperelastic-damage approach to simulate vaginal deliveries. Vila Pouca MCP; Ferreira JPS; Oliveira DA; Parente MPL; Mascarenhas T; Natal Jorge RM J Mech Behav Biomed Mater; 2018 Dec; 88():120-126. PubMed ID: 30170191 [TBL] [Abstract][Full Text] [Related]
10. Biometry of the pubovisceral muscle and levator hiatus by three-dimensional pelvic floor ultrasound. Dietz HP; Shek C; Clarke B Ultrasound Obstet Gynecol; 2005 Jun; 25(6):580-5. PubMed ID: 15883982 [TBL] [Abstract][Full Text] [Related]
11. The influence of an occipito-posterior malposition on the biomechanical behavior of the pelvic floor. Parente MP; Jorge RM; Mascarenhas T; Fernandes AA; Martins JA Eur J Obstet Gynecol Reprod Biol; 2009 May; 144 Suppl 1():S166-9. PubMed ID: 19272693 [TBL] [Abstract][Full Text] [Related]
12. In silico prediction of maximum perineal muscle strain during vaginal delivery by design of experiment. Hynčík L; Čechová H; Jansová M; Lv W; Hympánová LH; Krofta L Comput Methods Programs Biomed; 2023 Dec; 242():107835. PubMed ID: 37804737 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical analyses of the efficacy of patterns of maternal effort on second-stage progress. Lien KC; DeLancey JOL; Ashton-Miller JA Obstet Gynecol; 2009 Apr; 113(4):873-880. PubMed ID: 19305333 [TBL] [Abstract][Full Text] [Related]
14. In vivo evidence of significant levator ani muscle stretch on MR images of a live childbirth. Sindhwani N; Bamberg C; Famaey N; Callewaert G; Dudenhausen JW; Teichgräber U; Deprest J Am J Obstet Gynecol; 2017 Aug; 217(2):194.e1-194.e8. PubMed ID: 28412085 [TBL] [Abstract][Full Text] [Related]
15. Study on the influence of the fetus head molding on the biomechanical behavior of the pelvic floor muscles, during vaginal delivery. Silva ME; Oliveira DA; Roza TH; Brandão S; Parente MP; Mascarenhas T; Natal Jorge RM J Biomech; 2015 Jun; 48(9):1600-5. PubMed ID: 25757665 [TBL] [Abstract][Full Text] [Related]
16. The influence of the material properties on the biomechanical behavior of the pelvic floor muscles during vaginal delivery. Parente MP; Natal Jorge RM; Mascarenhas T; Fernandes AA; Martins JA J Biomech; 2009 Jun; 42(9):1301-6. PubMed ID: 19375709 [TBL] [Abstract][Full Text] [Related]
17. Levator ani muscle stretch induced by simulated vaginal birth. Lien KC; Mooney B; DeLancey JO; Ashton-Miller JA Obstet Gynecol; 2004 Jan; 103(1):31-40. PubMed ID: 14704241 [TBL] [Abstract][Full Text] [Related]
18. Subject specific finite elasticity simulations of the pelvic floor. Noakes KF; Pullan AJ; Bissett IP; Cheng LK J Biomech; 2008 Oct; 41(14):3060-5. PubMed ID: 18757058 [TBL] [Abstract][Full Text] [Related]
19. Creation of the biomechanical finite element model of female pelvic floor supporting structure based on thin-sectional high-resolution anatomical images. Xu Z; Chen N; Wang B; Yang J; Liu H; Zhang X; Li Y; Liu L; Wu Y J Biomech; 2023 Jan; 146():111399. PubMed ID: 36509024 [TBL] [Abstract][Full Text] [Related]
20. Persistent occiput posterior position and stress distribution in levator ani muscle during vaginal delivery computed by a finite element model. Havelková L; Krofta L; Kochová P; Liška V; Kališ V; Feyereisl J Int Urogynecol J; 2020 Jul; 31(7):1315-1324. PubMed ID: 31197428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]