These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 22209803)

  • 1. Auditory adaptation to sound intensity in conscious rats: 2-[F-18]-fluoro-2-deoxy-D-glucose PET study.
    Jang DP; Lee KM; Lee SY; Oh JH; Park CW; Kim IY; Kim YB; Cho ZH
    Neuroreport; 2012 Mar; 23(4):228-33. PubMed ID: 22209803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An animal model of central auditory pathway imaging in the rat brain by high resolution small animal positron emission tomography.
    Hsu WC; Tzen KY; Huy PT; Duet M; Yeh TH
    Acta Otolaryngol; 2009 Apr; 129(4):423-8. PubMed ID: 19117159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of the auditory pathway in rats with 18F-FDG PET activation studies based on different auditory stimuli and reference conditions including cochlea ablation.
    Mamach M; Kessler M; Bankstahl JP; Wilke F; Geworski L; Bengel FM; Kurt S; Berding G
    PLoS One; 2018; 13(10):e0205044. PubMed ID: 30278068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human auditory neuroimaging of intensity and loudness.
    Uppenkamp S; Röhl M
    Hear Res; 2014 Jan; 307():65-73. PubMed ID: 23973563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation in the auditory pathway of the gerbil studied with
    Kessler M; Mamach M; Beutelmann R; Bankstahl JP; Bengel FM; Klump GM; Berding G
    Brain Struct Funct; 2018 Dec; 223(9):4293-4305. PubMed ID: 30203305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic trauma induces reemergence of the growth- and plasticity-associated protein GAP-43 in the rat auditory brainstem.
    Michler SA; Illing RB
    J Comp Neurol; 2002 Sep; 451(3):250-66. PubMed ID: 12210137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small-animal repetitive transcranial magnetic stimulation combined with [¹⁸F]-FDG microPET to quantify the neuromodulation effect in the rat brain.
    Parthoens J; Verhaeghe J; Wyckhuys T; Stroobants S; Staelens S
    Neuroscience; 2014 Sep; 275():436-43. PubMed ID: 24979056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Responses of auditory neurons of the medulla oblongata of the frog to presentation of tones with sinusoidal amplitude modulation].
    Gorodetskaia ON; Bibikov NG
    Neirofiziologiia; 1985; 17(3):390-6. PubMed ID: 4022187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic range adaptation to sound level statistics in the auditory nerve.
    Wen B; Wang GI; Dean I; Delgutte B
    J Neurosci; 2009 Nov; 29(44):13797-808. PubMed ID: 19889991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.
    Gao PP; Zhang JW; Fan SJ; Sanes DH; Wu EX
    Neuroimage; 2015 Dec; 123():22-32. PubMed ID: 26306991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corticofugal modulation of acoustically induced Fos expression in the rat auditory pathway.
    Sun X; Xia Q; Lai CH; Shum DK; Chan YS; He J
    J Comp Neurol; 2007 Apr; 501(4):509-25. PubMed ID: 17278128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auditory fMRI of Sound Intensity and Loudness for Unilateral Stimulation.
    Behler O; Uppenkamp S
    Adv Exp Med Biol; 2016; 894():165-174. PubMed ID: 27080657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation in the auditory midbrain of the barn owl (Tyto alba) induced by tonal double stimulation.
    Singheiser M; Ferger R; von Campenhausen M; Wagner H
    Eur J Neurosci; 2012 Feb; 35(3):445-56. PubMed ID: 22288481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intratympanic manganese administration revealed sound intensity and frequency dependent functional activity in rat auditory pathway.
    Jin SU; Lee JJ; Hong KS; Han M; Park JW; Lee HJ; Lee S; Lee KY; Shin KM; Cho JH; Cheong C; Chang Y
    Magn Reson Imaging; 2013 Sep; 31(7):1143-9. PubMed ID: 23659767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes of 2-deoxyglucose uptake in the rat auditory pathway after bilateral ablation of the cochlea.
    Ahn SH; Oh SH; Lee JS; Jeong JM; Lim D; Lee DS; Kim CS
    Hear Res; 2004 Oct; 196(1-2):33-8. PubMed ID: 15464299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BOLD fMRI investigation of the rat auditory pathway and tonotopic organization.
    Cheung MM; Lau C; Zhou IY; Chan KC; Cheng JS; Zhang JW; Ho LC; Wu EX
    Neuroimage; 2012 Apr; 60(2):1205-11. PubMed ID: 22297205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of sinusoidal amplitude modulated sounds: deficits after bilateral lesions of auditory cortex in the rat.
    Cooke JE; Zhang H; Kelly JB
    Hear Res; 2007 Sep; 231(1-2):90-9. PubMed ID: 17629425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of visual activation in the rat brain using 2-deoxy-2-[(18)F]fluoro-D: -glucose and statistical parametric mapping (SPM).
    Soto-Montenegro ML; Vaquero JJ; Pascau J; Gispert JD; García-Barreno P; Desco M
    Mol Imaging Biol; 2009; 11(2):94-9. PubMed ID: 19037612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bandwidth determines modulatory effects of centrifugal pathways on cochlear hearing desensitization caused by loud sound.
    Rajan R
    Eur J Neurosci; 2006 Dec; 24(12):3589-600. PubMed ID: 17229107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental study on the generator of amplitude-modulation following response.
    Kiren T; Aoyagi M; Furuse H; Koike Y
    Acta Otolaryngol Suppl; 1994; 511():28-33. PubMed ID: 8203239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.