These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 22209909)
21. Structures of type B ribose 5-phosphate isomerase from Trypanosoma cruzi shed light on the determinants of sugar specificity in the structural family. Stern AL; Naworyta A; Cazzulo JJ; Mowbray SL FEBS J; 2011 Mar; 278(5):793-808. PubMed ID: 21205211 [TBL] [Abstract][Full Text] [Related]
22. Trypanosoma cruzi contains a single detectable uracil-DNA glycosylase and repairs uracil exclusively via short patch base excision repair. Peña-Diaz J; Akbari M; Sundheim O; Farez-Vidal ME; Andersen S; Sneve R; Gonzalez-Pacanowska D; Krokan HE; Slupphaug G J Mol Biol; 2004 Sep; 342(3):787-99. PubMed ID: 15342237 [TBL] [Abstract][Full Text] [Related]
23. 1H, 13C and 15N NMR assignments of the E. coli peptide deformylase in complex with a natural inhibitor called actinonin. Larue V; Seijo B; Tisne C; Dardel F Biomol NMR Assign; 2009 Jun; 3(1):153-5. PubMed ID: 19636969 [TBL] [Abstract][Full Text] [Related]
24. Crystal structure of the Escherichia coli peptide deformylase. Chan MK; Gong W; Rajagopalan PT; Hao B; Tsai CM; Pei D Biochemistry; 1997 Nov; 36(45):13904-9. PubMed ID: 9374869 [TBL] [Abstract][Full Text] [Related]
25. Slow-binding inhibition of peptide deformylase by cyclic peptidomimetics as revealed by a new spectrophotometric assay. Nguyen KT; Hu X; Pei D Bioorg Chem; 2004 Jun; 32(3):178-91. PubMed ID: 15110195 [TBL] [Abstract][Full Text] [Related]
26. The crystal structures of four peptide deformylases bound to the antibiotic actinonin reveal two distinct types: a platform for the structure-based design of antibacterial agents. Guilloteau JP; Mathieu M; Giglione C; Blanc V; Dupuy A; Chevrier M; Gil P; Famechon A; Meinnel T; Mikol V J Mol Biol; 2002 Jul; 320(5):951-62. PubMed ID: 12126617 [TBL] [Abstract][Full Text] [Related]
27. Genetic diversity and kinetic properties of Trypanosoma cruzi dihydroorotate dehydrogenase isoforms. Sariego I; Annoura T; Nara T; Hashimoto M; Tsubouchi A; Iizumi K; Makiuchi T; Murata E; Kita K; Aoki T Parasitol Int; 2006 Mar; 55(1):11-6. PubMed ID: 16172019 [TBL] [Abstract][Full Text] [Related]
28. Structure-function relationships within the peptide deformylase family. Evidence for a conserved architecture of the active site involving three conserved motifs and a metal ion. Meinnel T; Lazennec C; Villoing S; Blanquet S J Mol Biol; 1997 Apr; 267(3):749-61. PubMed ID: 9126850 [TBL] [Abstract][Full Text] [Related]
29. Human mitochondrial peptide deformylase, a new anticancer target of actinonin-based antibiotics. Lee MD; She Y; Soskis MJ; Borella CP; Gardner JR; Hayes PA; Dy BM; Heaney ML; Philips MR; Bornmann WG; Sirotnak FM; Scheinberg DA J Clin Invest; 2004 Oct; 114(8):1107-16. PubMed ID: 15489958 [TBL] [Abstract][Full Text] [Related]
30. A direct spectrophotometric assay for peptide deformylase. Guo XC; Ravi Rajagopalan PT; Pei D Anal Biochem; 1999 Sep; 273(2):298-304. PubMed ID: 10469501 [TBL] [Abstract][Full Text] [Related]
31. Characterization of cobalt(II)-substituted peptide deformylase: function of the metal ion and the catalytic residue Glu-133. Rajagopalan PT; Grimme S; Pei D Biochemistry; 2000 Feb; 39(4):779-90. PubMed ID: 10651644 [TBL] [Abstract][Full Text] [Related]
32. The molecular analysis of Trypanosoma cruzi metallocarboxypeptidase 1 provides insight into fold and substrate specificity. Niemirowicz G; Fernández D; Solà M; Cazzulo JJ; Avilés FX; Gomis-Rüth FX Mol Microbiol; 2008 Nov; 70(4):853-66. PubMed ID: 18793339 [TBL] [Abstract][Full Text] [Related]
33. A new subclass of the zinc metalloproteases superfamily revealed by the solution structure of peptide deformylase. Meinnel T; Blanquet S; Dardel F J Mol Biol; 1996 Sep; 262(3):375-86. PubMed ID: 8845003 [TBL] [Abstract][Full Text] [Related]
34. The evolution of peptide deformylase as a target: contribution of biochemistry, genetics and genomics. Yuan Z; White RJ Biochem Pharmacol; 2006 Mar; 71(7):1042-7. PubMed ID: 16289392 [TBL] [Abstract][Full Text] [Related]
35. Antibiotic activity and characterization of BB-3497, a novel peptide deformylase inhibitor. Clements JM; Beckett RP; Brown A; Catlin G; Lobell M; Palan S; Thomas W; Whittaker M; Wood S; Salama S; Baker PJ; Rodgers HF; Barynin V; Rice DW; Hunter MG Antimicrob Agents Chemother; 2001 Feb; 45(2):563-70. PubMed ID: 11158755 [TBL] [Abstract][Full Text] [Related]
36. Peptide deformylases from Vibrio parahaemolyticus phage and bacteria display similar deformylase activity and inhibitor binding clefts. Grzela R; Nusbaum J; Fieulaine S; Lavecchia F; Desmadril M; Nhiri N; Van Dorsselaer A; Cianferani S; Jacquet E; Meinnel T; Giglione C Biochim Biophys Acta Proteins Proteom; 2018 Feb; 1866(2):348-355. PubMed ID: 29101077 [TBL] [Abstract][Full Text] [Related]
37. Structure analysis of peptide deformylases from Streptococcus pneumoniae, Staphylococcus aureus, Thermotoga maritima and Pseudomonas aeruginosa: snapshots of the oxygen sensitivity of peptide deformylase. Kreusch A; Spraggon G; Lee CC; Klock H; McMullan D; Ng K; Shin T; Vincent J; Warner I; Ericson C; Lesley SA J Mol Biol; 2003 Jul; 330(2):309-21. PubMed ID: 12823970 [TBL] [Abstract][Full Text] [Related]
38. 2D-QSAR in hydroxamic acid derivatives as peptide deformylase inhibitors and antibacterial agents. Gupta MK; Mishra P; Prathipati P; Saxena AK Bioorg Med Chem; 2002 Dec; 10(12):3713-6. PubMed ID: 12413827 [TBL] [Abstract][Full Text] [Related]
40. Proteome-wide analysis of the amino terminal status of Escherichia coli proteins at the steady-state and upon deformylation inhibition. Bienvenut WV; Giglione C; Meinnel T Proteomics; 2015 Jul; 15(14):2503-18. PubMed ID: 26017780 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]