These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 22210008)

  • 1. Gastrin releasing peptide-29 requires vagal and splanchnic neurons to evoke satiation and satiety.
    Wright SA; Washington MC; Garcia C; Sayegh AI
    Peptides; 2012 Jan; 33(1):125-31. PubMed ID: 22210008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The feeding responses evoked by cholecystokinin are mediated by vagus and splanchnic nerves.
    Brown TA; Washington MC; Metcalf SA; Sayegh AI
    Peptides; 2011 Aug; 32(8):1581-6. PubMed ID: 21745513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Duodenal myotomy blocks reduction of meal size and prolongation of intermeal interval by cholecystokinin.
    Lateef DM; Washington MC; Raboin SJ; Roberson AE; Mansour MM; Williams CS; Sayegh AI
    Physiol Behav; 2012 Feb; 105(3):829-34. PubMed ID: 22047890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Vagotomy and Sympathectomy on the Feeding Responses Evoked by Intra-Aortic Cholecystokinin-8 in Adult Male Sprague Dawley Rats.
    Mhalhal TR; Washington MC; Heath JC; Sayegh AI
    Endocr Res; 2021; 46(2):57-65. PubMed ID: 33426974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exenatide and feeding: possible peripheral neuronal pathways.
    Hunt JV; Washington MC; Sayegh AI
    Peptides; 2012 Feb; 33(2):285-90. PubMed ID: 22222610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gastrin releasing peptide-29 evokes feeding responses in the rat.
    Washington MC; Wright SA; Sayegh AI
    Peptides; 2011 Feb; 32(2):241-5. PubMed ID: 21055429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Vagus Nerve and the Celiaco-mesenteric Ganglia Participate in the Feeding Responses Evoked by Non-sulfated Cholecystokinin-8 in Male Sprague Dawley Rats.
    Dafalla AI; Mhalhal TR; Hiscocks K; Heath J; Sayegh AI
    Endocr Res; 2020; 45(2):73-83. PubMed ID: 31573821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Obese and lean Zucker rats respond similarly to intraperitoneal administration of gastrin-releasing peptides.
    Washington MC; Park KH; Sayegh AI
    Peptides; 2014 Aug; 58():36-41. PubMed ID: 24874706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence analysis and feeding responses evoked by the large molecular form of gastrin releasing peptide (GRP) in the rat GRP-29.
    Reeve JR; Washington MC; Park KH; Johnson T; Hunt J; Shively JE; Ronk M; Lee TD; Goto Y; Chew P; Ho FJ; Sayegh AI
    Peptides; 2014 Sep; 59():1-8. PubMed ID: 24993846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The stomach and/or upper duodenum contain sites of action that control meal size and intermeal interval length by exogenous rat gastrin releasing peptide.
    Washington MC; Aglan AH; Sayegh AI
    Peptides; 2014 May; 55():41-6. PubMed ID: 24556509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gastrin releasing peptides increase Fos-like immunoreactivity in the enteric nervous system and the dorsal vagal complex.
    Washington MC; Sayegh AI
    Peptides; 2011 Aug; 32(8):1600-5. PubMed ID: 21745514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intravenous infusion of gastrin-releasing peptide-27 and bombesin in rats reveals differential effects on meal size and intermeal interval length.
    Washington MC; Salyer S; Aglan AH; Sayegh AI
    Peptides; 2014 Jan; 51():145-9. PubMed ID: 24291388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The BB2 receptor antagonist BW2258U89 attenuates the feeding responses evoked by exogenous gastrin releasing peptide-29.
    Washington MC; Mhalhal TR; Sayegh AI
    Horm Behav; 2016 Sep; 85():1-4. PubMed ID: 27381650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prolongation of intermeal interval by gastrin-releasing peptide depends upon time of delivery.
    Rushing PA; Gibbs J
    Peptides; 1998; 19(8):1439-42. PubMed ID: 9809660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of bombesin and bombesin-related peptides in the short-term control of food intake.
    Sayegh AI
    Prog Mol Biol Transl Sci; 2013; 114():343-70. PubMed ID: 23317790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subdiaphragmatic vagal deafferentation fails to block the anorectic effect of hydroxycitrate.
    Leonhardt M; Hrupka BJ; Langhans W
    Physiol Behav; 2004 Sep; 82(2-3):263-8. PubMed ID: 15276787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roux-en-Y gastric bypass augments the feeding responses evoked by gastrin-releasing peptides.
    Washington MC; Mhalhal TR; Johnson-Rouse T; Berger J; Heath J; Seeley R; Sayegh AI
    J Surg Res; 2016 Dec; 206(2):517-524. PubMed ID: 27884350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of vagal and splanchnic section on food intake, weight, serum leptin and hypothalamic neuropeptide Y in rat.
    Furness JB; Koopmans HS; Robbins HL; Clerc N; Tobin JM; Morris MJ
    Auton Neurosci; 2001 Sep; 92(1-2):28-36. PubMed ID: 11570701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective effects of vagal deafferentation and celiac-superior mesenteric ganglionectomy on the reinforcing and satiating action of intestinal nutrients.
    Sclafani A; Ackroff K; Schwartz GJ
    Physiol Behav; 2003 Feb; 78(2):285-94. PubMed ID: 12576127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prolongation of the postprandial intermeal interval by gastrin-releasing peptide1-27 in spontaneously feeding rats.
    Rushing PA; Henderson RP; Gibbs J
    Peptides; 1998; 19(1):175-7. PubMed ID: 9437751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.