These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22210649)

  • 1. Effects of fluid viscoelasticity on the performance of an axial blood pump model.
    Hu QH; Li JY; Zhang MY
    ASAIO J; 2012; 58(1):32-9. PubMed ID: 22210649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental study of Newtonian and non-Newtonian flow dynamics in an axial blood pump model.
    Hu QH; Li JY; Zhang MY; Zhu XR
    Artif Organs; 2012 Apr; 36(4):429-33. PubMed ID: 21995643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The characterization of a non-Newtonian blood analog in natural- and shear-layer-induced transitional flow.
    Li L; Walker AM; Rival DE
    Biorheology; 2014; 51(4-5):275-91. PubMed ID: 25281596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental flow studies in an elastic Y-model.
    Mijovic B; Liepsch D
    Technol Health Care; 2003; 11(2):115-41. PubMed ID: 12697953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of hemolysis in turbulent shear orifice flow.
    Tamagawa M; Akamatsu T; Saitoh K
    Artif Organs; 1996 Jun; 20(6):553-9. PubMed ID: 8817954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump.
    Good BC; Manning KB
    Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical investigation on hydrodynamics and biocompatibility of a magnetically suspended axial blood pump.
    Zhu X; Zhang M; Zhang G; Liu H
    ASAIO J; 2006; 52(6):624-9. PubMed ID: 17117050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.
    Schüle CY; Thamsen B; Blümel B; Lommel M; Karakaya T; Paschereit CO; Affeld K; Kertzscher U
    Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational fluid dynamics investigation of a centrifugal blood pump.
    Legendre D; Antunes P; Bock E; Andrade A; Biscegli JF; Ortiz JP
    Artif Organs; 2008 Apr; 32(4):342-8. PubMed ID: 18370951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical and experimental flow analysis of the Wang-Zwische double-lumen cannula.
    De Bartolo C; Nigro A; Fragomeni G; Colacino FM; Wang D; Jones CC; Zwischenberger J
    ASAIO J; 2011; 57(4):318-27. PubMed ID: 21654494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of hydraulic and hemolytic properties of different impeller designs of an implantable rotary blood pump by computational fluid dynamics.
    Arvand A; Hahn N; Hormes M; Akdis M; Martin M; Reul H
    Artif Organs; 2004 Oct; 28(10):892-8. PubMed ID: 15384994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental performance comparison of Newtonian and non-Newtonian fluids on a centrifugal blood pump.
    Onder A; Yapici R; Incebay O
    Proc Inst Mech Eng H; 2022 Mar; 236(3):399-405. PubMed ID: 35014554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump.
    Zhang J; Gellman B; Koert A; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    Artif Organs; 2006 Mar; 30(3):168-77. PubMed ID: 16480391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of an axial flow blood pump: computational fluid dynamics results using particle image velocimetry.
    Su B; Chua LP; Wang X
    Artif Organs; 2012 Apr; 36(4):359-67. PubMed ID: 22040356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models.
    Mejia J; Mongrain R; Bertrand OF
    J Biomech Eng; 2011 Jul; 133(7):074501. PubMed ID: 21823750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of computational fluid dynamics techniques to blood pumps.
    Sukumar R; Athavale MM; Makhijani VB; Przekwas AJ
    Artif Organs; 1996 Jun; 20(6):529-33. PubMed ID: 8817950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of an idealized cavopulmonary circulation with mechanical circulatory assist using an intravascular rotary blood pump.
    Bhavsar SS; Moskowitz WB; Throckmorton AL
    Artif Organs; 2010 Oct; 34(10):816-27. PubMed ID: 20964699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Filament support spindle for an intravascular cavopulmonary assist device.
    Throckmorton AL; Kapadia JY; Wittenschlaeger TM; Medina TJ; Hoang HQ; Bhavsar SS
    Artif Organs; 2010 Nov; 34(11):1039-44. PubMed ID: 21092047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance.
    Untaroiu A; Throckmorton AL; Patel SM; Wood HG; Allaire PE; Olsen DB
    Artif Organs; 2005 Jul; 29(7):581-91. PubMed ID: 15982287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational characterization of flow and hemolytic performance of the UltraMag blood pump for circulatory support.
    Taskin ME; Fraser KH; Zhang T; Gellman B; Fleischli A; Dasse KA; Griffith BP; Wu ZJ
    Artif Organs; 2010 Dec; 34(12):1099-113. PubMed ID: 20626739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.