These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 22210690)
1. On marathons and Sprints: an integrated quantitative proteomics and transcriptomics analysis of differences between slow and fast muscle fibers. Drexler HC; Ruhs A; Konzer A; Mendler L; Bruckskotten M; Looso M; Günther S; Boettger T; Krüger M; Braun T Mol Cell Proteomics; 2012 Jun; 11(6):M111.010801. PubMed ID: 22210690 [TBL] [Abstract][Full Text] [Related]
2. Single Muscle Fiber Proteomics Reveals Distinct Protein Changes in Slow and Fast Fibers during Muscle Atrophy. Lang F; Khaghani S; Türk C; Wiederstein JL; Hölper S; Piller T; Nogara L; Blaauw B; Günther S; Müller S; Braun T; Krüger M J Proteome Res; 2018 Oct; 17(10):3333-3347. PubMed ID: 30142977 [TBL] [Abstract][Full Text] [Related]
3. Proteomic analysis of slow- and fast-twitch skeletal muscles. Okumura N; Hashida-Okumura A; Kita K; Matsubae M; Matsubara T; Takao T; Nagai K Proteomics; 2005 Jul; 5(11):2896-906. PubMed ID: 15981298 [TBL] [Abstract][Full Text] [Related]
5. ATP consumption by sarcoplasmic reticulum Ca²⁺ pumps accounts for 40-50% of resting metabolic rate in mouse fast and slow twitch skeletal muscle. Smith IC; Bombardier E; Vigna C; Tupling AR PLoS One; 2013; 8(7):e68924. PubMed ID: 23840903 [TBL] [Abstract][Full Text] [Related]
6. Parvalbumin deficiency in fast-twitch muscles leads to increased 'slow-twitch type' mitochondria, but does not affect the expression of fiber specific proteins. Racay P; Gregory P; Schwaller B FEBS J; 2006 Jan; 273(1):96-108. PubMed ID: 16367751 [TBL] [Abstract][Full Text] [Related]
7. The C terminus (amino acids 75-94) and the linker region (amino acids 42-54) of the Ca2+-binding protein S100A1 differentially enhance sarcoplasmic Ca2+ release in murine skinned skeletal muscle fibers. Most P; Remppis A; Weber C; Bernotat J; Ehlermann P; Pleger ST; Kirsch W; Weber M; Uttenweiler D; Smith GL; Katus HA; Fink RH J Biol Chem; 2003 Jul; 278(29):26356-64. PubMed ID: 12721284 [TBL] [Abstract][Full Text] [Related]
8. Fiber-type-specific sensitivities and phenotypic adaptations to dietary fat overload differentially impact fast- versus slow-twitch muscle contractile function in C57BL/6J mice. Ciapaite J; van den Berg SA; Houten SM; Nicolay K; van Dijk KW; Jeneson JA J Nutr Biochem; 2015 Feb; 26(2):155-64. PubMed ID: 25516489 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional regulation of acetylcholinesterase-associated collagen ColQ in fast- and slow-twitch muscle fibers. Ting AK; Siow NL; Kong LW; Tsim KW Chem Biol Interact; 2005 Dec; 157-158():63-70. PubMed ID: 16256971 [TBL] [Abstract][Full Text] [Related]
10. Proteomic and microRNA Transcriptome Analysis revealed the microRNA-SmyD1 network regulation in Skeletal Muscle Fibers performance of Chinese perch. Chu W; Zhang F; Song R; Li Y; Wu P; Chen L; Cheng J; Du S; Zhang J Sci Rep; 2017 Nov; 7(1):16498. PubMed ID: 29184116 [TBL] [Abstract][Full Text] [Related]
11. Changes in acetylcholine receptor function induce shifts in muscle fiber type composition. Jin TE; Wernig A; Witzemann V FEBS J; 2008 May; 275(9):2042-54. PubMed ID: 18384381 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional regulation of acetylcholinesterase-associated collagen ColQ: differential expression in fast and slow twitch muscle fibers is driven by distinct promoters. Lee HH; Choi RC; Ting AK; Siow NL; Jiang JX; Massoulié J; Tsim KW J Biol Chem; 2004 Jun; 279(26):27098-107. PubMed ID: 15102835 [TBL] [Abstract][Full Text] [Related]
13. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres. Trinh HH; Lamb GD Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):591-600. PubMed ID: 16789925 [TBL] [Abstract][Full Text] [Related]
14. Nerve influence on myosin light chain phosphorylation in slow and fast skeletal muscles. Bozzo C; Spolaore B; Toniolo L; Stevens L; Bastide B; Cieniewski-Bernard C; Fontana A; Mounier Y; Reggiani C FEBS J; 2005 Nov; 272(22):5771-85. PubMed ID: 16279942 [TBL] [Abstract][Full Text] [Related]
15. ATP consumption by sarcoplasmic reticulum Ca2+ pumps accounts for 50% of resting metabolic rate in mouse fast and slow twitch skeletal muscle. Norris SM; Bombardier E; Smith IC; Vigna C; Tupling AR Am J Physiol Cell Physiol; 2010 Mar; 298(3):C521-9. PubMed ID: 20018953 [TBL] [Abstract][Full Text] [Related]
16. Cross-reinnervation changes the expression patterns of the monocarboxylate transporters 1 and 4: An experimental study in slow and fast rat skeletal muscle. Bergersen LH; Thomas M; Jóhannsson E; Waerhaug O; Halestrap A; Andersen K; Sejersted OM; Ottersen OP Neuroscience; 2006; 138(4):1105-13. PubMed ID: 16446038 [TBL] [Abstract][Full Text] [Related]
17. The calcineurin-NFAT pathway and muscle fiber-type gene expression. Swoap SJ; Hunter RB; Stevenson EJ; Felton HM; Kansagra NV; Lang JM; Esser KA; Kandarian SC Am J Physiol Cell Physiol; 2000 Oct; 279(4):C915-24. PubMed ID: 11003571 [TBL] [Abstract][Full Text] [Related]
18. Proteomic analysis revealed different responses to hypergravity of soleus and extensor digitorum longus muscles in mice. Ohira T; Ino Y; Nakai Y; Morita H; Kimura A; Kurata Y; Kagawa H; Kimura M; Egashira K; Moriya S; Hiramatsu K; Kawakita M; Kimura Y; Hirano H J Proteomics; 2020 Apr; 217():103686. PubMed ID: 32061808 [TBL] [Abstract][Full Text] [Related]
19. Sarcoplasmic reticulum Ca2+ release in rat slow- and fast-twitch muscles. Delbono O; Meissner G J Membr Biol; 1996 May; 151(2):123-30. PubMed ID: 8661500 [TBL] [Abstract][Full Text] [Related]
20. Calsequestrin content and SERCA determine normal and maximal Ca2+ storage levels in sarcoplasmic reticulum of fast- and slow-twitch fibres of rat. Murphy RM; Larkins NT; Mollica JP; Beard NA; Lamb GD J Physiol; 2009 Jan; 587(2):443-60. PubMed ID: 19029185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]