These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 22210831)

  • 1. Vacuolar H+-ATPase works in parallel with the HOG pathway to adapt Saccharomyces cerevisiae cells to osmotic stress.
    Li SC; Diakov TT; Rizzo JM; Kane PM
    Eukaryot Cell; 2012 Mar; 11(3):282-91. PubMed ID: 22210831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CaZF, a plant transcription factor functions through and parallel to HOG and calcineurin pathways in Saccharomyces cerevisiae to provide osmotolerance.
    Jain D; Roy N; Chattopadhyay D
    PLoS One; 2009; 4(4):e5154. PubMed ID: 19365545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinated gene regulation in the initial phase of salt stress adaptation.
    Vanacloig-Pedros E; Bets-Plasencia C; Pascual-Ahuir A; Proft M
    J Biol Chem; 2015 Apr; 290(16):10163-75. PubMed ID: 25745106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways.
    Wojda I; Alonso-Monge R; Bebelman JP; Mager WH; Siderius M
    Microbiology (Reading); 2003 May; 149(Pt 5):1193-1204. PubMed ID: 12724381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae.
    Vázquez-Ibarra A; Subirana L; Ongay-Larios L; Kawasaki L; Rojas-Ortega E; Rodríguez-González M; de Nadal E; Posas F; Coria R
    FEBS J; 2018 Mar; 285(6):1079-1096. PubMed ID: 29341399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: use of an analog-sensitive HOG1 allele.
    Westfall PJ; Thorner J
    Eukaryot Cell; 2006 Aug; 5(8):1215-28. PubMed ID: 16896207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of vacuolar H+-ATPase (V-ATPase) activity in yeast generates an iron deprivation signal that is moderated by induction of the peroxiredoxin TSA2.
    Diab HI; Kane PM
    J Biol Chem; 2013 Apr; 288(16):11366-77. PubMed ID: 23457300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of the late endo-lysosomal lipid PI(3,5)P2 with the Vph1 isoform of yeast V-ATPase increases its activity and cellular stress tolerance.
    Banerjee S; Clapp K; Tarsio M; Kane PM
    J Biol Chem; 2019 Jun; 294(23):9161-9171. PubMed ID: 31023825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two putative MAP kinase genes, ZrHOG1 and ZrHOG2, cloned from the salt-tolerant yeast Zygosaccharomyces rouxii are functionally homologous to the Saccharomyces cerevisiae HOG1 gene.
    Iwaki T; Tamai Y; Watanabe Y
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():241-248. PubMed ID: 10206704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress.
    Lawrence CL; Botting CH; Antrobus R; Coote PJ
    Mol Cell Biol; 2004 Apr; 24(8):3307-23. PubMed ID: 15060153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The high osmotic response and cell wall integrity pathways cooperate to regulate transcriptional responses to zymolyase-induced cell wall stress in Saccharomyces cerevisiae.
    García R; Rodríguez-Peña JM; Bermejo C; Nombela C; Arroyo J
    J Biol Chem; 2009 Apr; 284(16):10901-11. PubMed ID: 19234305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitogen-activated protein kinase Hog1 mediates adaptation to G1 checkpoint arrest during arsenite and hyperosmotic stress.
    Migdal I; Ilina Y; Tamás MJ; Wysocki R
    Eukaryot Cell; 2008 Aug; 7(8):1309-17. PubMed ID: 18552285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae.
    O'Rourke SM; Herskowitz I
    Genes Dev; 1998 Sep; 12(18):2874-86. PubMed ID: 9744864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae.
    Panadero J; Pallotti C; Rodríguez-Vargas S; Randez-Gil F; Prieto JA
    J Biol Chem; 2006 Feb; 281(8):4638-45. PubMed ID: 16371351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cdc37p is required for stress-induced high-osmolarity glycerol and protein kinase C mitogen-activated protein kinase pathway functionality by interaction with Hog1p and Slt2p (Mpk1p).
    Hawle P; Horst D; Bebelman JP; Yang XX; Siderius M; van der Vies SM
    Eukaryot Cell; 2007 Mar; 6(3):521-32. PubMed ID: 17220467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Putative Membrane Receptors Contribute to Activation and Efficient Signaling of Mitogen-Activated Protein Kinase Cascades during Adaptation of Aspergillus fumigatus to Different Stressors and Carbon Sources.
    Silva LP; Frawley D; Assis LJ; Tierney C; Fleming AB; Bayram O; Goldman GH
    mSphere; 2020 Sep; 5(5):. PubMed ID: 32938702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of vacuolar H+-ATPase activity by the Cdc42 effector Ste20 in Saccharomyces cerevisiae.
    Lin M; Li SC; Kane PM; Höfken T
    Eukaryot Cell; 2012 Apr; 11(4):442-51. PubMed ID: 22327006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cdc42-Specific GTPase-Activating Protein Rga1 Squelches Crosstalk between the High-Osmolarity Glycerol (HOG) and Mating Pheromone Response MAPK Pathways.
    Patterson JC; Goupil LS; Thorner J
    Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene.
    Schüller C; Brewster JL; Alexander MR; Gustin MC; Ruis H
    EMBO J; 1994 Sep; 13(18):4382-9. PubMed ID: 7523111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Hog1, Tps1 and Sod1 in boric acid tolerance of Saccharomyces cerevisiae.
    Schmidt M; Akasaka K; Messerly JT; Boyer MP
    Microbiology (Reading); 2012 Oct; 158(Pt 10):2667-2678. PubMed ID: 22902726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.