BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22210844)

  • 1. Aeroterrestrial Coleochaete (Streptophyta, Coleochaetales) models early plant adaptation to land.
    Graham LE; Arancibia-Avila P; Taylor WA; Strother PK; Cook ME
    Am J Bot; 2012 Jan; 99(1):130-44. PubMed ID: 22210844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defense reaction.
    Holzinger A; Kaplan F; Blaas K; Zechmann B; Komsic-Buchmann K; Becker B
    PLoS One; 2014; 9(10):e110630. PubMed ID: 25340847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Snow ball earth and the split of Streptophyta and Chlorophyta.
    Becker B
    Trends Plant Sci; 2013 Apr; 18(4):180-3. PubMed ID: 23102566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecophysiological Response on Dehydration and Temperature in Terrestrial Klebsormidium (Streptophyta) Isolated from Biological Soil Crusts in Central European Grasslands and Forests.
    Donner A; Glaser K; Borchhardt N; Karsten U
    Microb Ecol; 2017 May; 73(4):850-864. PubMed ID: 28011994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Living in biological soil crust communities of African deserts-Physiological traits of green algal Klebsormidium species (Streptophyta) to cope with desiccation, light and temperature gradients.
    Karsten U; Herburger K; Holzinger A
    J Plant Physiol; 2016 May; 194():2-12. PubMed ID: 26422081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Streptophyte algae and the origin of embryophytes.
    Becker B; Marin B
    Ann Bot; 2009 May; 103(7):999-1004. PubMed ID: 19273476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms.
    Holzinger A; Karsten U
    Front Plant Sci; 2013; 4():327. PubMed ID: 23986769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant evolution: landmarks on the path to terrestrial life.
    de Vries J; Archibald JM
    New Phytol; 2018 Mar; 217(4):1428-1434. PubMed ID: 29318635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignin-like compounds and sporopollenin coleochaete, an algal model for land plant ancestry.
    Delwiche CF; Graham LE; Thomson N
    Science; 1989 Jul; 245(4916):399-401. PubMed ID: 17744148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation.
    Pichrtová M; Hájek T; Elster J
    FEMS Microbiol Ecol; 2014 Aug; 89(2):270-80. PubMed ID: 24476153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entransia and Hormidiella, sister lineages of Klebsormidium (Streptophyta), respond differently to light, temperature, and desiccation stress.
    Herburger K; Karsten U; Holzinger A
    Protoplasma; 2016 Sep; 253(5):1309-23. PubMed ID: 26439247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new microscopic method to analyse desiccation-induced volume changes in aeroterrestrial green algae.
    Lajos K; Mayr S; Buchner O; Blaas K; Holzinger A
    J Microsc; 2016 Aug; 263(2):192-9. PubMed ID: 27075881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NEW STREPTOPHYTE GREEN ALGAE FROM TERRESTRIAL HABITATS AND AN ASSESSMENT OF THE GENUS INTERFILUM (KLEBSORMIDIOPHYCEAE, STREPTOPHYTA)(1).
    Mikhailyuk TI; Sluiman HJ; Massalski A; Mudimu O; Demchenko EM; Kondratyuk SY; Friedl T
    J Phycol; 2008 Dec; 44(6):1586-603. PubMed ID: 27039871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DESICCATION STRESS CAUSES STRUCTURAL AND ULTRASTRUCTURAL ALTERATIONS IN THE AEROTERRESTRIAL GREEN ALGA KLEBSORMIDIUM CRENULATUM (KLEBSORMIDIOPHYCEAE, STREPTOPHYTA) ISOLATED FROM AN ALPINE SOIL CRUST
    Holzinger A; Lütz C; Karsten U
    J Phycol; 2011 Jun; 47(3):591-602. PubMed ID: 27021989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomes of Subaerial Zygnematophyceae Provide Insights into Land Plant Evolution.
    Cheng S; Xian W; Fu Y; Marin B; Keller J; Wu T; Sun W; Li X; Xu Y; Zhang Y; Wittek S; Reder T; Günther G; Gontcharov A; Wang S; Li L; Liu X; Wang J; Yang H; Xu X; Delaux PM; Melkonian B; Wong GK; Melkonian M
    Cell; 2019 Nov; 179(5):1057-1067.e14. PubMed ID: 31730849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desiccation tolerance in streptophyte algae and the algae to land plant transition: evolution of LEA and MIP protein families within the Viridiplantae.
    Becker B; Feng X; Yin Y; Holzinger A
    J Exp Bot; 2020 Jun; 71(11):3270-3278. PubMed ID: 32107542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydraulics of Asteroxylon mackei, an early Devonian vascular plant, and the early evolution of water transport tissue in terrestrial plants.
    Wilson JP; Fischer WW
    Geobiology; 2011 Mar; 9(2):121-30. PubMed ID: 21244621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The charophycean green algae provide insights into the early origins of plant cell walls.
    Sørensen I; Pettolino FA; Bacic A; Ralph J; Lu F; O'Neill MA; Fei Z; Rose JK; Domozych DS; Willats WG
    Plant J; 2011 Oct; 68(2):201-11. PubMed ID: 21707800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunofluorescence localization of the tubulin cytoskeleton during cell division and cell growth in members of the Coleochaetales (Streptophyta).
    Doty KF; Betzelberger AM; Kocot KM; Cook ME
    J Phycol; 2014 Aug; 50(4):624-39. PubMed ID: 26988447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embryophyte stress signaling evolved in the algal progenitors of land plants.
    de Vries J; Curtis BA; Gould SB; Archibald JM
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):E3471-E3480. PubMed ID: 29581286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.