BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22210850)

  • 1. Maximum likelihood inference implies a high, not a low, ancestral haploid chromosome number in Araceae, with a critique of the bias introduced by 'x'.
    Cusimano N; Sousa A; Renner SS
    Ann Bot; 2012 Mar; 109(4):681-92. PubMed ID: 22210850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining FISH and model-based predictions to understand chromosome evolution in Typhonium (Araceae).
    Sousa A; Cusimano N; Renner SS
    Ann Bot; 2014 Mar; 113(4):669-80. PubMed ID: 24500949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Evolution of Haploid Chromosome Numbers in the Sunflower Family.
    Mota L; Torices R; Loureiro J
    Genome Biol Evol; 2016 Dec; 8(11):3516-3528. PubMed ID: 27797951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probabilistic models of chromosome number evolution and the inference of polyploidy.
    Mayrose I; Barker MS; Otto SP
    Syst Biol; 2010 Mar; 59(2):132-44. PubMed ID: 20525626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Impact of Reconstruction Methods, Phylogenetic Uncertainty and Branch Lengths on Inference of Chromosome Number Evolution in American Daisies (Melampodium, Asteraceae).
    McCann J; Schneeweiss GM; Stuessy TF; Villaseñor JL; Weiss-Schneeweiss H
    PLoS One; 2016; 11(9):e0162299. PubMed ID: 27611687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep dive into the ancestral chromosome number and genome size of flowering plants.
    Carta A; Bedini G; Peruzzi L
    New Phytol; 2020 Nov; 228(3):1097-1106. PubMed ID: 32421860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global history of the ancient monocot family Araceae inferred with models accounting for past continental positions and previous ranges based on fossils.
    Nauheimer L; Metzler D; Renner SS
    New Phytol; 2012 Sep; 195(4):938-950. PubMed ID: 22765273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative linkage maps suggest that fission, not polyploidy, underlies near-doubling of chromosome number within monkeyflowers (Mimulus; Phrymaceae).
    Fishman L; Willis JH; Wu CA; Lee YW
    Heredity (Edinb); 2014 May; 112(5):562-8. PubMed ID: 24398885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenomics of the plant family Araceae.
    Henriquez CL; Arias T; Pires JC; Croat TB; Schaal BA
    Mol Phylogenet Evol; 2014 Jun; 75():91-102. PubMed ID: 24594061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are holocentrics doomed to change? Limited chromosome number variation in Rhynchospora Vahl (Cyperaceae).
    Ribeiro T; Buddenhagen CE; Thomas WW; Souza G; Pedrosa-Harand A
    Protoplasma; 2018 Jan; 255(1):263-272. PubMed ID: 28844108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosome diversity and evolution in Liliaceae.
    Peruzzi L; Leitch IJ; Caparelli KF
    Ann Bot; 2009 Feb; 103(3):459-75. PubMed ID: 19033282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny.
    Glick L; Mayrose I
    Mol Biol Evol; 2014 Jul; 31(7):1914-22. PubMed ID: 24710517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstructing the origins and the biogeography of species' genomes in the highly reticulate allopolyploid-rich model grass genus Brachypodium using minimum evolution, coalescence and maximum likelihood approaches.
    Díaz-Pérez A; López-Álvarez D; Sancho R; Catalán P
    Mol Phylogenet Evol; 2018 Oct; 127():256-271. PubMed ID: 29879468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylotranscriptomic analyses reveal multiple whole-genome duplication events, the history of diversification and adaptations in the Araceae.
    Zhao L; Yang YY; Qu XJ; Ma H; Hu Y; Li HT; Yi TS; Li DZ
    Ann Bot; 2023 Feb; 131(1):199-214. PubMed ID: 35671385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endosperm development in the Araceae (Alismatales) and evolution of developmental modes in monocots.
    Tobe H; Kadokawa T
    J Plant Res; 2010 Nov; 123(6):731-9. PubMed ID: 20364441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State of the art in cytogenetics, insights into chromosome number evolution, and new C-value reports for the fern family Gleicheniaceae.
    Lima LV; Sousa SM; Almeida TE; Salino A
    An Acad Bras Cienc; 2021; 93(suppl 3):e20201881. PubMed ID: 34550205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia.
    Hoang PTN; Schubert I
    Chromosoma; 2017 Dec; 126(6):729-739. PubMed ID: 28756515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reevaluation of the cox1 group I intron in Araceae and angiosperms indicates a history dominated by loss rather than horizontal transfer.
    Cusimano N; Zhang LB; Renner SS
    Mol Biol Evol; 2008 Feb; 25(2):265-76. PubMed ID: 18158323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular phylogenetics, historical biogeography, and chromosome number evolution of Portulaca (Portulacaceae).
    Ocampo G; Columbus JT
    Mol Phylogenet Evol; 2012 Apr; 63(1):97-112. PubMed ID: 22210411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolution of haploid chromosome numbers in Meliponini.
    Travenzoli NM; Cardoso DC; Werneck HA; Fernandes-Salomão TM; Tavares MG; Lopes DM
    PLoS One; 2019; 14(10):e0224463. PubMed ID: 31648276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.