These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22210860)

  • 1. In vitro experimental system for analysis of transcription-translation coupling.
    Castro-Roa D; Zenkin N
    Nucleic Acids Res; 2012 Mar; 40(6):e45. PubMed ID: 22210860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methodology for the analysis of transcription and translation in transcription-coupled-to-translation systems in vitro.
    Castro-Roa D; Zenkin N
    Methods; 2015 Sep; 86():51-9. PubMed ID: 26080048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for the assembly and analysis of in vitro transcription-coupled-to-translation systems.
    Castro-Roa D; Zenkin N
    Methods Mol Biol; 2015; 1276():81-99. PubMed ID: 25665559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA polymerase and the ribosome: the close relationship.
    McGary K; Nudler E
    Curr Opin Microbiol; 2013 Apr; 16(2):112-7. PubMed ID: 23433801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A translational riboswitch coordinates nascent transcription-translation coupling.
    Chatterjee S; Chauvier A; Dandpat SS; Artsimovitch I; Walter NG
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33850018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic dynamics and ribosome-RNAP interactions in transcription-translation coupling.
    Li X; Chou T
    Biophys J; 2023 Jan; 122(1):254-266. PubMed ID: 36199250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two Old Dogs, One New Trick: A Review of RNA Polymerase and Ribosome Interactions during Transcription-Translation Coupling.
    Conn AB; Diggs S; Tam TK; Blaha GM
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31137816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measures of single- versus multiple-round translation argue against a mechanism to ensure coupling of transcription and translation.
    Chen M; Fredrick K
    Proc Natl Acad Sci U S A; 2018 Oct; 115(42):10774-10779. PubMed ID: 30275301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Architecture of a transcribing-translating expressome.
    Kohler R; Mooney RA; Mills DJ; Landick R; Cramer P
    Science; 2017 Apr; 356(6334):194-197. PubMed ID: 28408604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription-translation coupling: direct interactions of RNA polymerase with ribosomes and ribosomal subunits.
    Fan H; Conn AB; Williams PB; Diggs S; Hahm J; Gamper HB; Hou YM; O'Leary SE; Wang Y; Blaha GM
    Nucleic Acids Res; 2017 Nov; 45(19):11043-11055. PubMed ID: 28977553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translation activates the paused transcription complex and restores transcription of the trp operon leader region.
    Landick R; Carey J; Yanofsky C
    Proc Natl Acad Sci U S A; 1985 Jul; 82(14):4663-7. PubMed ID: 2991886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription-translation coupling: Recent advances and future perspectives.
    Woodgate J; Zenkin N
    Mol Microbiol; 2023 Oct; 120(4):539-546. PubMed ID: 37856403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human mitochondrial ribosomal protein MRPL12 interacts directly with mitochondrial RNA polymerase to modulate mitochondrial gene expression.
    Wang Z; Cotney J; Shadel GS
    J Biol Chem; 2007 Apr; 282(17):12610-8. PubMed ID: 17337445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of RNA polymerase bound to ribosomal 30S subunit.
    Demo G; Rasouly A; Vasilyev N; Svetlov V; Loveland AB; Diaz-Avalos R; Grigorieff N; Nudler E; Korostelev AA
    Elife; 2017 Oct; 6():. PubMed ID: 29027901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionally uncoupled transcription-translation in Bacillus subtilis.
    Johnson GE; Lalanne JB; Peters ML; Li GW
    Nature; 2020 Sep; 585(7823):124-128. PubMed ID: 32848247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NusG-Dependent RNA Polymerase Pausing and Tylosin-Dependent Ribosome Stalling Are Required for Tylosin Resistance by Inducing 23S rRNA Methylation in Bacillus subtilis.
    Yakhnin H; Yakhnin AV; Mouery BL; Mandell ZF; Karbasiafshar C; Kashlev M; Babitzke P
    mBio; 2019 Nov; 10(6):. PubMed ID: 31719185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A trailing ribosome speeds up RNA polymerase at the expense of transcript fidelity via force and allostery.
    Wee LM; Tong AB; Florez Ariza AJ; Cañari-Chumpitaz C; Grob P; Nogales E; Bustamante CJ
    Cell; 2023 Mar; 186(6):1244-1262.e34. PubMed ID: 36931247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of T7 RNA polymerase in an optimized Escherichia coli coupled in vitro transcription-translation system. Application in regulatory studies and expression of long transcription units.
    Köhrer C; Mayer C; Gröbner P; Piendl W
    Eur J Biochem; 1996 Feb; 236(1):234-9. PubMed ID: 8617270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic sequence-level model of coupled transcription and translation in prokaryotes.
    Mäkelä J; Lloyd-Price J; Yli-Harja O; Ribeiro AS
    BMC Bioinformatics; 2011 Apr; 12():121. PubMed ID: 21521517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of Escherichia coli RNA polymerase with the ribosomal protein S1 and the Sm-like ATPase Hfq.
    Sukhodolets MV; Garges S
    Biochemistry; 2003 Jul; 42(26):8022-34. PubMed ID: 12834354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.